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CERTAIN SUBCLASS OF BI-UNIVALENT FUNCTIONS DEFINED BY
¢-DERIVATIVE OPERATOR INVOLVING POISSON DISTRIBUTION

P. NANDINI'*, S. LATHA"', §

ABSTRACT. In this paper, by using the g-derivative operator, we define a new subclass
of bi-univalent functions involving Poisson distribution series associated with Horadam
polynomials. We find estimates for the general Taylor-Maclaurin coefficients and also
Fekete-Szego problem for this class.
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1. INTRODUCTION

Let A denote the class of the functions f of the form
f(z) = z+Zanz", (1)
n=2

which are analytic in the open unit disc D = {z € C; |z| < 1} and satisfy the normalization
condition f(0) = f/(0) — 1 =0.

Let S be the subclass of A consisting of functions of the form (1) which are also univalent
in D. According to the Koebe’s one-quarter theorem [2], every function f € S has an
inverse f~! defined by

e =2 (zeD)

and
) =w (lol <n(in( =),
where
g(w) = f_l(w) =w — asw?® + (QCL% — ag)w3 - (5&% — bagag + a4)w4 + ... (2)

A function f € A is said to be bi-univalent in D if both f and its inverse f~! are
univalent in . Let ¥ denote the class of bi-univalent functions in D given by (1). For
more basic results one may refer Srivastava et al. [12] and references there in.
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Next, we recall the definition of subordination between analytic functions. For two
functions f, g € A, we say that f is subordinate to ¢ in D, written as f < ¢ provided there
is an analytic function w in D with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). It
follows from Schwarz Lemma that

f(z) <g(z) < [f(0)=4(0) and f(D)Cg(D), =zeD.
For ¢ € (0,1), the Jackson g-derivative of a function f € A is given by (see, for example,

6. 7): o
i {f’%_)l)z =0 “
Thus from (3), we have
D f(z) =1+ i[n]qanz”*1 (4)
where " .
s = T2

and, as ¢ = 17, [n]y = n.
Recently, Hérzum and Kocer [5] studied the Horadam polynomials h,,(x), which are
given by the following recurrence relation (see, for example, [4, 11, 3]):

hn(x) = pxhp—1(x) + ohp—2(z) (z€R; neN={1,2,3,..}) (5)
with
hi(x) =a and he(x) = bz,

for some real constants a,b, p and o. Moreover, the generating function of the horadam
polynomials h,(z) is given by

(6)

i a+ (b—ap)rz
_ -1 _ —
Me,2) = 3 (@)™ = = =0
n=1
Remark 1.1. We record here some special cases of the Horadam polynomials hy(x) by
appropriately choosing the parameters a,b, p and o.
(i) Taking a =b= p =0 =1, we obtain the Fibonacci polynomials F,(x).
(ii) Taking a =2,b=p =0 =1, we get the Lucas polynomials L, (x).
(i1i) Taking a = o =1 and b = p = 2, we have the Pell polynomials P, (x).
(iv) Takinga=b=p =2 and o =1, we find the Pell-Lucas polynomials Qn(x).
(v) Takinga =b=1,p=2 and 0 = —1, we obtain Chebyshev polynomials T, (x) of
first kind.
(vi) Taking a = 1,b = p = 2 and 0 = —1, we have Chebyshev polynomials U, (x) of
second kind.

A variable z is said to have Poisson distribution if it takes the values 0,1,2,3, ... with
probabilities

e ™ e ™ e ™
e ™. m ,m? ,m° o
1! 2! 3!
respectively, where m is called the parameter.
Thus
m’e "
P(_’L‘:T‘): s 7":071,2,3,..
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Recently, Porwal [9] introduced a power series whose coefficients are probabilities of Pois-
son distribution

e n—1
K(m,z) =2+ Z %e_mz”, (m >0,z € D).
n=2 ’

We note that, by ratio test, the radius of convergence of the above series is infinity. In
2016, Porwal and Kumar [10] introduced a new linear operator I(m, z) : A — A which is
defined as follows

Inf(z) =K(m,2)* f(z) =2+ Z (nmi_ll)'e_manz", (m>0,zeD),
n=2 '

where x denote the convolution (or Hadamard product) of two series.

The object of the present paper is to introduce a new subclass of 3 involving the
Poisson distribution associated with Horadam polynomials h,,(z). We obtain the estimates
on the initial Taylor-Maclaurin coefficients and the Fekete-Szego inequalities for this sub-
class of the bi-univalent function class 3. defined by means of the Horadam polynomials.

Definition 1.1. For 0 < g <1 and 0 < X <1, a function f € X is said to be in the class
Hs (A, m,x,q) if it satisfies the following conditions:

(1 = N)zDy(Im f(2)) + Az2Dy(2Dg(Im f(2)))
(1 - )‘)Imf(z) + )‘ZDq(Imf(Z))

<I(z,2)+1—a

and
(1 = NwDy(Img(w)) + AwDg(2Dg(Img(w)))
(1= NIng(w) + AMwDg(Iymg(w))

where a is real constant and the function g = f~1 is given by (2).

< I(z,w)+1—a,

Example 1.1. For A = 0 and 0 < q < 1, a function f € ¥ is said to be in the class
H(O,m,x,q) =: Sx(m, x,q) if it satisfies the following conditions:

Dynf () oy
T 7(2) < I(z,2)+1
and
wDy(Ing(w) o
T g (u0) < (z,w) +1—a.

where a is real constant and the function g = f~1 is given by (2).

Example 1.2. For A =1 and 0 < q < 1, a function f € ¥ is said to be in the class
H(1,m,z,q) = Kx(m,x,q) if it satisfies the following conditions:

Dq(ZDq(Imf(Z))) —a
Dy(nf(z) A
and
Dq('U)Dq(Img(w))) €T.z —a
D(lug(w)) e

where a is real constant and the function g = f~' is given by (2).
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2. MAIN RESULTS

Theorem 2.1. For 0 < ¢g<1and 0 < XA <1, let f € A be in the class Hx(\,m,z,q).
Then
laz| <

|bz|+/2|bx|

VIm2e=mg(A,m) — 2pm2e=2m (1 + X([2]g — 1))2([2] — 1)2) ba? — 20am?e=2m(1 + A([2]g — 1))2([2]q — 1)?]
and

las| <

1 ( 2|bx| n b2a? )
m2e=™ \ (1 +A([Ble = D)([Bla — 1) ~ em™(1+ A([2]g — 1))*([2]4 — 1)
where
¢\, m) = (L+A([8]g — D)([38]g — 1) — 27" (1 + A([2]g — 1))*([2], — 1) (7)
Proof. Let f € Hx(\,m,x,q). Then there are two analytic functions u,v : D — D given
by
u(z) = urz + ug2® + uzz® + ... (z e D) (8)
and
v(w) = viw + vow? + vawd + .. (w e D), (9)
with u(0) =v(0) =0 and  max{[u(z)],|v(w)| <1} (z,w € D), such that

(1 = N)2Dg(Im f(2)) + AzDq(2Dq(Im f(2)))
(1 - /\)Imf(z) + )‘ZDq(Imf(z )

=I(z,u(2)+1—a

and
(1 = NwDg(Img(w)) + AwDq(2Dq(Img(w)))

(1 - )‘)Img(w) + /\qu(Img(w))
or, equivalently, that

(1 =N)2Dg(Im f(2)) + AzDqg(2Dg (I f(2)))
(1= NI f(2) + AzDq(Im f(2))

= (e, v(w)) +1 - a,

= hi(z) + ha(z)u(z) + ha(z)(u(2))* + ... + 1 —a (10)

and
(1 = NwDg(Img(w)) + AwDy(2Dg(Img(w)))
(1 =N Img(w) + AwDy(Img(w))
Combining (8),(9),(10) and (1 find that
- A

1), we
(1= N)2Dg(Im f(2)) + A2Dq(2Dg(Im f(2))) _ 2)us 2 T)us )ui)z®
(1= NInf(2) + A2Dg(Im f(2)) ~ el Rl 0

= hi(z) + he(z)v(w) + hs(z)(v(w))* 4+ ... + 1 —a.  (11)

and
(1 = NwDy(Img(w)) + AwDq(2Dg(Img(w)))
(1= NImg(w) + AwDq(Img(w))

It is well- known that, if

=1+ ha(z)viw + [ha(x)v2 + ha(x)vi]w® + ... (13)

max{lu(z)], [o(w)|} <1 (2,0 €D),
then
luj| <1 and |vj| <1 (VjeN). (14)
Now, by comparing the corresponding coefficients in (12) and (13) and after some simpli-
fication, we have
14+ X([2]lq — D]me ™ ([2]q — 1)az = ha(z)u1, (15)
[1+A([B]q = 1)] n;, e " ([8lg — Das — [1+ A([2]g — D*m®e " ([2]y — 1)a3
= ha(z)uz + ha(z)us,
—[+ A2l = DIme™ " ([2lq — Daz = ha(z)n (17)

(16)
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and
[T+ A([3lq — 1)]%67771([3}[1 — 1)(2a3 — a3) — [1 + A([2]g — D]*m?e™*"([2], — 1)a3 (18)
= ha(z)va + ha(z)vi.
It follows from (15) and (17) that
Ul = —01 (19)
and
21+ A([2]g — DPPmPe™"([2], — 1)%a3 = (ha(2))?(uf + 7). (20)
If we add (16) to (18), we find hat
2 =M p(A, m)ad = ha(x)(uz + v2) + ha(x)(u? + v?), (21)

2
where ¢(\,m) is given by (7).
Upon substituting the value of u3 + v} from (20) into the right-hand side of (21), we
deduce that
o= (ha())? (uz + v2)

2 2{mPemg(A, m) (ha(x))? — m2e=2m (14 A([2], — 1))2([2]g — 1)ha(2)}
By further computations using (5) (14)and (22), we obtain
|az| <

(22)

|bx|+/2|bx|

Vlm2e m60x, m) — 2omPe 2 (1 + M2l — D)2(2lg — D?)ba? — 20ame 27 (1 + A(2ly — D)2 (2 — 2|

Next if we subtract (18) from (16), we can easily see that
2

2™ e (1 A8l — D)([3ls — Dlas — ad) = ha(a) s — v2) + hol) u — o). (23)
In view of (19) and (20), we find from (23) that
as ha(x)(u2 — v2) (ha(@))* (uf +?)

T e (14 Al — V(s 1) | 2mie (L + A2l - D)2, - 2
Thus, by applying (5), we obtain

1 ( 2|bx| n b2a? ) .
m?e=™ \ (1+A(Ble —D)(Bla = 1) e (1 +A([2g — 1))*([2lg — 1)?

las| <

In the next theorem we discuss Fekete-Szegd inequality for f € Hx(\, m,z,q).

Theorem 2.2. For 0 < ¢ < 1, 0 < A <1 and z,u € R, let f € A be in the class
Hx (A, m,x,q). Then

2|bx| .
m257m[1+)\([3]q_1)]([3](1_1)7
(Iu 1< \[bmze_mé(A,M)720m26_2m[HM[Q]q*1>]2([2]q*1)2]bz2*20am26_2m[1+A([2]qfl)]2([2]471)2\)
= m2e~ ™ [1+X([3]q—1)]([3]q—1)b%z2
2|bw |3 |u—1] .
[[bm2Ze=m (A, m)—2pmZe=2m[14+X([2]q—1)]?([2]q—1)2]bz2 —20amZe=2m [14+A([2]g—1)]2([2]g —1)?[’
(| . 1| < \[bm?e’mdﬁ(%m)f?pm%’zm[1+A<[2]q*1>]2([21q*1)2Jb22720am26’2m[1+A([2]q*1)]2<[2Jq*1)2\)
H = mZe=m 1+ ([3]q— D] ([3]q — 1)bZ2 :

laz — pa3| <

Proof. 1t follows from (22) and (23) that
ha(x)(ug — v2)
2 e=m (14 A([3, — 1])([3], — 1))
_ ha(x) (uz — v2)
277 (1+ A3l — D)([3ls — 1)
ha(2)® (uz + v2) (1 — p)
2 [ =g\ m) (ha(@))? — m2e=2(1 -+ A([2]y — 1)2([2], — 1)%hs ()]

a3 — pa3 = + (1 — p)aj

+
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) o) . 1 ) U2
5 [( W,)*'mg ™14+ A([3]g — D]([3]; — 1)
1
+ <Q(M7 z) — m2 e=m[1 4+ A([3]q — D]([3]q — 1)> UQ}
where
h 2 1—
" (ha(2))*(1 — p)

e g m) (ha()2 — mPe2n(1+ A([2, — 1)2(2)g — 1)hs(z)’

Thus, according to (5), we have

2|bx|
a5 — 2| < | T ~DE=D 0 < [Qw )] < mre —m[1+x<[31q—1>1<[31q—1>
bz [, )| 1, 2)| > e G

after some computation, we obtain

2|bz| .
M A(Blg DBl =1
1| < lomZe T o00m) ~2pm?e 2 A2y ~ DI (Rly— )P e 2o am?e 2 142 ((2]y ~ D2l 1))
=1 mZe= I A([3]g—1)]([3]q —1)b222
2fbal®lu—1] .
TomZe=m 60 m)—2pmZe =TT AR, — D2 (B, ~ 21622 —Z2oamZe =T [T A(Bl, ~ D (B, ~ 21
[m2e ™ 60 m)—2pm2e 2 1EA([21g—1)]2 (21— 1) Jba® —20am e~ > [ A([21g— 112 ([21g— 1)
=1 2 mZe=m I A(Blg D) ](Blg ~ 162 :

|as — pa3| <

O
Putting ;# = 1 in Theorem 2.2, we obtain the following result.

Corollary 2.1. For 0 < ¢ < 1, 0 < A < 1 and x € R, let f € A be in the class
Hx(N\,m,z,q). Then

2|bx|
21+ (B, — DIy — 1)

Remark 2.1. We can derive analogous results for normalized analytic and bi-univalent
functions in the class Hx(\,m,xz,q) associated with the Poisson distribution series by
taking some or all of the particular cases of the Horadam polynomial as shown in Remark
1.1 and using the same technique as in Section 2 above. Furthermore the results can be
deduced by appropriately specialising the parameter \ for the subclasses Ss(m,x,q) and
Ks(m,z,q), which are defined in Example 1.1 and 1.2 respectively.

lag — a3| <
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