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ON HYPER COMPLEX NUMBERS WITH HIGHER ORDER

BALANCING NUMBERS COMPONENTS

R. MOHANTY1, H. MAHATO1∗, §

Abstract. In this article, we define higher-order balancing numbers. Next, we employ
higher-order balancing numbers to present a novel family of hyper complex numbers.
These families are referred to as the higher-order balancing 2r-ions. We give various
algebraic properties of this higher-order balancing 2r-ions, such as the recurrence relation,
the generating function, Binet’s formula, Catalan’s identity, Cassini’s identity, d’Ocagne’s
identity and Vajda’s identity and so on. Furthermore, we derive the matrix representation
of the higher-order balancing 2r-ions, therefore establishing Cassini’s identity as a new
type.
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1. Introduction

One of the simplest and most celebrated integer sequence is the Fibonacci sequence.
Many mathematicians have studied the generalizations of Fibonacci sequences. Another
renowned and well-known sequence is the balancing sequence. Balancing number sequence
was introduced by Panda and Ray [15]. The recurrence relation for balancing number is
Bn+1 = 6Bn − Bn−1 with initials B0 = 0 and B1 = 1. The characteristics equation is
x2 − 6x + 1 = 0 with roots γ1 = 3 +

√
8 and γ2 = 3 −

√
8. The Binet’s formula for the

balancing number are given by

Bn =
γn1 − γn2
2
√
8

. (1)

The recurrence relation for Lucas-balancing number is Dn+1 = 6Dn−Dn−1 with initials
D0 = 1 and D1 = 3, the characteristic equation is same as the balancing number and it’s
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Binet’s formula is

Dn =
γn1 + γn2

2
. (2)

The study of normed division algebra with a number sequence begins with the ear-
lier work of A.F. Horadam [3] on quaternions with Fibonacci and Lucas numbers. In
1843, William Rowan Hamilton discovered the quaternions by extending the concept of
the set of complex numbers C to the set of quaternions; where quaternions Q is 4 = 22-
dimensional algebra over R. This algebra is non-commutative and associative. Inspired
by W.R. Hamilton’s work, in 1843, J.T. Graves discovered the octonions(O), which is
an 8 = 23-dimensional algebra over R. The octonions(O) are a non-commutative and
non-associative algebra. Another generalization is sedenion(S) algebra, which is a non-
commutative, non-associative, non-alternative, but power-associative 16 = 24-dimensional
algebra with a quadratic norm and whose elements are constructed from real numbers
R. In 1845, A. Cayley rediscovered these algebras and in their respect, they are some-
times also referred to as the Cayley numbers. The subsequent doubling process applied to
sedenion(S) generates the trigintaduonions(T) is 32 = 25-dimensional algebra over R. This
doubling process can be extended beyond the trigintaduonions to construct the 2r-ions (or
hyper complex numbers). The real 2r-ions algebra is a 2r-dimensional R-linear space with
basis {e0, e1, e2, . . . , e2r−1}, where e0 is referred as the unit element and {e1, e2, . . . , e2r−1}
are imaginaries.

Numerous mathematicians have investigated quaternions, octonions with balancing and
Lucas-balancing number components. The nth balancing quaternion and the nth Lucas-
balancing quaternion were defined by Patel and Ray [10]. Gaussian balancing and Gauss-
ian Lucas-balancing quaternions were introduced by Asci and Aydinyuz [1]. They show
matrix representations for these quaternions. Tasci [16] studied the bicomplex balancing
and bicomplex Lucas-balancing quaternions. Prasad et al. [11] presented the k-balancing
and k-Lucas-balancing octonions and hyperbolic octonions. Subsequently, Göcen and
Soykan [2] introduced the Horadam 2s-ions, which are the generalizations of quaternions,
octonions, etc.

A hyper complex number is given by Kantor and Solodovnikov (1989) as an element of
a unital, but not necessarily associative or commutative, finite-dimensional algebra over
the real numbers. The elements are generated with real number coefficients (a0, a1, . . . , an)
for a basis {1, i1, i2, . . . , in}. Where possible, it is conventional to choose the basis so that
ik2 ∈ {−1, 0, 1}.

Many researchers have recently focused on studying higher-order numbers. Randid [14],
for instance, established the higher-order Fibonacci numbers. Also, higher-order Fibonacci
quaternions were defined by Kizilateş and Kone [4]. Furthermore, higher-order Fibonacci

hyper complex numbers were introduced by Kızılateş and Kone [5]. Subsequently, Özkan
and Uysal [9] presented higher-order Jacobsthal and Jacobsthal-Lucas numbers, as well

as higher-order Jacobsthal and Jacobsthal-Lucas quaternions. Then Özimamoğlu [7, 8]
introduced the hyper complex numbers with higher-order Pell number components and
Jacobsthal number components respectively. In [12, 13] Prasad et al. studied the higher-
order Mersenne numbers and higher-order Balancing numbers respectively.

Motivated by some of the previously listed articles, we present higher-order balancing

numbers B
(s)
n . We define higher-order balancing 2r-ions (higher-order balancing hyper

complex numbers) HCB(s)
n whose components are balancing numbers. We find recurrence

relation, Binet’s formula, generating function, exponential generating function, various
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identities for HCB(s)
n . After that, we construct a matrix with higher-order balancing

2r-ions entries and obtain Cassini’s identity by using the matrices.

2. Higher order balancing 2r-ions

In this section, we introduce the higher-order balancing 2r-ions. Also, we derive new
properties and identities of them. Throughout this article, let

γ̂1 =
2r−1∑
i=0

γis1 ei = e0 + γs1e1 + γ2s1 e2 + . . .+ γ
(2r−1)s
1 e2r−1,

γ̂2 =
2r−1∑
i=0

γis2 ei = e0 + γs2e1 + γ2s2 e2 + . . .+ γ
(2r−1)s
2 e2r−1.

Now, with the help of the Equation 1, we describe a generalization of balancing numbers
as follows:

Definition 2.1. The higher-order balancing numbers for s ≥ 1 integer are defined by

B(s)
n =

Bns

Bs
=

γns1 − γns2
γs1 − γs2

. (3)

As Bns is divisible by Bs, the ratio Bns
Bs

is an integer. Therefore, all higher-order

balancing numbers B
(s)
n are integers. Let s = 1, then the higher-order balancing numbers

B
(1)
n become the well-known balancing numbers Bn. We present the higher-order balancing

numbers B
(s)
n for some n and s in Table 1.

B
(s)
n s = 1 s = 2 s = 3 s = 4 s = 5

B
(s)
0 0 0 0 0 0

B
(s)
1 1 1 1 1 1

B
(s)
2 6 36 198 1154 6726

B
(s)
3 35 1155 39203 1331715 45239075

Table 1. The higher-order balancing numbers B
(s)
n for some n and s.

Definition 2.2. The higher-order balancing hyper complex numbers HCB(s)
n (or higher-

order balancing 2r-ions) are defined by

HCB(s)
n =

2r−1∑
i=0

B
(s)
n+iei = B(s)

n e0 +B
(s)
n+1e1 +B

(s)
n+2e2 + . . .+B

(s)
n+2r−1e2r−1,

where B
(s)
n is the n-th higher-order balancing number.

Some special situations for HCB(s)
n in Definition 2.2 are as follows:

1. If we take r = 0, we get the higher-order balancing numbers B
(s)
n [equation 3]

2. If we take r = 1, we get the higher-order balancing complex numbers CB(s)
n

3. If we take r = 2, we get the higher-order balancing quaternions QB
(s)
n

4. If we take r = 3, we get the higher-order balancing octonions OB
(s)
n

5. If we take r = 4, we get the higher-order balancing sedenions SB(s)
n

6. If we take r = 0 and s = 1, we get the well-known balancing numbers Bn
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7. If we take r = 1 and s = 1, we get the balancing complex numbers CBn

8. If we take r = 2 and s = 1, we get the balancing quaternions QBn

9. If we take r = 3 and s = 1, we get the balancing octonions OBn

10. If we take r = 4 and s = 1, we get the balancing sedenions SBn.

The conjugate of the higher-order balancing 2r-ions HCB(s)
n is

HCB(s)
n = B(s)

n e0 −
2r−1∑
i=1

B
(s)
n+iei

= B(s)
n e0 −B

(s)
n+1e1 − . . .−B

(s)
n+2r−1e2r−1. (4)

Proposition 2.1. For higher-order balancing 2r-ions HCB(s)
n , we get

HCB(s)
n +HCB(s)

n = 2B(s)
n .

Proof. Using Definition 2.2 and Equation 4, we obtain the required result. □

Theorem 2.1 (Binet’s formula). The Binet’s formula of the higher-order balancing 2r-

ions HCB(s)
n is

HCB(s)
n =

γns1 γ̂1 − γns2 γ̂2
γs1 − γs2

.

Proof. From Definition 2.2 and 2.1, we obtain

HCB(s)
n = B(s)

n e0 +B
(s)
n+1e1 +B

(s)
n+2e2 + . . .+B

(s)
n+2r−1e2r−1

=
[γns1 − γns2
γs1 − γs2

]
e0 +

[γ(n+1)s
1 − γ

(n+1)s
2

γs1 − γs2

]
e1 +

[γ(n+2)s
1 − γ

(n+2)s
2

γs1 − γs2

]
e2

+ . . .+
[γ(n+2r−1)s

1 − γ
(n+2r−1)s
2

γs1 − γs2

]
e2r−1.

After some mathematical calculations, we get

HCB(s)
n =

γns1 γ̂1 − γns2 γ̂2
γs1 − γs2

.

This completes the proof. □

Corollary 2.1. For some special values of s, by Theorem 2.1, the Binet’s formulas of

HCB(1)
n are given as follows:

(i) For r = 1, we derive the Binet’s formula of the balancing complex numbers as

CBn =
γn1 γ̂1 − γn2 γ̂2

2
√
8

(balancing 21 − ions)

(ii) For r = 2, we derive the Binet’s formula of the balancing quaternions as

QBn =
γn1 γ̂1 − γn2 γ̂2

2
√
8

(balancing 22 − ions)

(iii) For r = 3, we derive the Binet’s formula of the balancing octonions as

OBn =
γn1 γ̂1 − γn2 γ̂2

2
√
8

(balancing 23 − ions)
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(iv) For r = 4, we derive the Binet’s formula of the balancing sedenions as

SBn =
γn1 γ̂1 − γn2 γ̂2

2
√
8

(balancing 24 − ions)

(v) For r ∈ Z+, we derive the Binet’s formula of the balancing 2r-ions as

HCB(1)
n =

γn1 γ̂1 − γn2 γ̂2

2
√
8

(balancing 2r − ions).

Theorem 2.2. For n ∈ Z+, we get the following recurrence relation:

HCB(s)
n+1 = 2DsHCB(s)

n −HCB(s)
n−1, where Ds is the Lucas-balancing number.

Proof. By using Binet’s formula in Theorem 2.1 and Equation 2, we obtain

HCB(s)
n+1 =

γ
(n+1)s
1 γ̂1 − γ

(n+1)s
2 γ̂2

γs1 − γs2

=
1

γs1 − γs2
(γ

(n+1)s
1 γ̂1 − γ

(n+1)s
2 γ̂2)

=
1

γs1 − γs2
(γ

(n+1)s
1 γ̂1 − γs1γ

ns
2 γ̂2 + γs1γ

ns
2 γ̂2 − γ

(n+1)s
2 γ̂2)

=
1

γs1 − γs2

[
γs1(γ

ns
1 γ̂1 − γns2 γ̂2) + (γs1γ

ns
2 γ̂2 − γ

(n+1)s
2 γ̂2)

]
= γs1HCB(s)

n +
1

γs1 − γs2
(γs1γ

ns
2 γ̂2 − γ

(n+1)s
2 γ̂2)

= (γs1 + γs2)HCB(s)
n − γs2HCB(s)

n +
1

γs1 − γs2
(γs1γ

ns
2 γ̂2 − γ

(n+1)s
2 γ̂2)

= 2DsHCB(s)
n +

1

γs1 − γs2

[
− γs2γ

ns
1 γ̂1 + γs2γ

ns
2 γ̂2 + γs1γ

ns
2 γ̂2 − γ

(n+1)s
2 γ̂2

]
= 2DsHCB(s)

n +
1

γs1 − γs2
(γ1γ2)

s(−γ
(n−1)s
1 γ̂1 + γ

(n−1)s
2 γ̂2)

= 2DsHCB(s)
n − γ

(n−1)s
1 γ̂1 − γ

(n−1)s
2 γ̂2

γs1 − γs2

= 2DsHCB(s)
n −HCB(s)

n−1.

Which completes the proof. □

Theorem 2.3. The generating function of the higher-order balancing 2r-ions HCB(s)
n is

HCB(s)
n (t) =

(γ̂1 − γ̂2)− (γs2γ̂1 − γs1γ̂2)t

(γs1 − γs2)(1− 2Dst+ t2)
, where Ds is the Lucas-balancing number.
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Proof. The generating function of HCB(s)
n is given by

HCB(s)
n (t) =

∞∑
n=0

HCB(s)
n tn

=

∞∑
n=0

[γns1 γ̂1 − γns2 γ̂2
γs1 − γs2

]
tn

=
1

γs1 − γs2

[
γ̂1

∞∑
n=0

(γs1t)
n − γ̂2

∞∑
n=0

(γs2t)
n
]

=
1

γs1 − γs2

[
γ̂1

1

1− γs1t
− γ̂2

1

1− γs2t

]
,

after some mathematical calculations, we get

HCB(s)
n (t) =

(γ̂1 − γ̂2)− (γs2γ̂1 − γs1γ̂2)t

(γs1 − γs2)(1− 2Dst+ t2)
.

Thus, the result is obtained. □

Corollary 2.2. For some special values of r, by Theorem 2.3 the generating functions of

HCB(1)
n (t) are given as follows:

(i) For r = 1, we derive the generating function of the balancing complex numbers as

CBn(t) =
te0 + e1

1− 6t+ t2
(balancing 21 − ions)

(ii) For r = 2, we derive the generating function of the balancing quaternions as

QBn(t) =
te0 + e1 + (6− t)e2 + (35− 6t)e3

1− 6t+ t2
(balancing 22 − ions)

(iii) For r = 3, we derive the generating function of the balancing octonions as

OBn(t) =
te0 +

∑7
i=1(Bi −Bi−1t)ei
1− 6t+ t2

(balancing 23 − ions)

(iv) For r = 4, we derive the generating function of the balancing sedenions as

SBn(t) =
te0 +

∑15
i=1(Bi −Bi−1t)ei
1− 6t+ t2

(balancing 24 − ions)

(v) For r ∈ Z+, we derive the generating function of the balancing 2r-ions as

HCB(1)
n (t) =

te0 +
∑2r−1

i=1 (Bi −Bi−1t)ei
1− 6t+ t2

(balancing 2r − ions).

Theorem 2.4. For n ∈ N and m ∈ Z+, the generating function of balancing 2r-ions

HCB(s)
n+m is

HCB(s)
n+m(t) =

HCB(s)
m −HCB(s)

m−1t

1− 2Dst+ t2
,

where Ds is the Lucas-balancing number.

Proof. We have

HCB(s)
n+m(t) =

∞∑
n=0

HCB(s)
n+mtn.
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Using Binet’s formula in Theorem 2.1 and some mathematical calculation, we obtain

HCB(s)
n+m(t) =

HCB(s)
m −HCB(s)

m−1t

1− 2Dst+ t2
.

□

Theorem 2.5. The exponential generating function of the higher-order balancing 2r-ions

HCB(s)
n+m is

EHCB(s)
n+m

(t) =
eγ

s
1tγ̂1 − eγ

s
2tγ̂2

γs1 − γs2
.

Proof. We have

EHCB(s)
n+m

(t) =
∞∑
n=0

HCB(s)
n+m

tn

n!

=
∞∑
n=0

[γns1 γ̂1 − γns2 γ̂2
γs1 − γs2

] tn
n!

=
1

γs1 − γs2

[
γ̂1

∞∑
n=0

(γs1t)
n

n!
− γ̂2

∞∑
n=0

(γs2t)
n

n!

]
=

eγ
s
1tγ̂1 − eγ

s
2tγ̂2

γs1 − γs2
.

Thus, the proof is completed. □

Theorem 2.6 (Vajda’s identity). For any integers n, m and k, we get

HCB(s)
n+mHCB(s)

n+k −HCB(s)
n HCB(s)

n+m+k =
Bs

m(γks1 γ̂2γ̂1 − γks2 γ̂1γ̂2)

γs1 − γs2
.

Proof. From Binet’s formula of the higher-order for balancing 2r-ions in Theorem 2.1 and
Equation 3, we obtain

HCB(s)
n+mHCB(s)

n+k −HCB(s)
n HCB(s)

n+m+k =
[γ(n+m)s

1 γ̂1 − γ
(n+m)s
2 γ̂2

γs1 − γs2

][γ(n+k)s
1 γ̂1 − γ

(n+k)s
2 γ̂2

γs1 − γs2

]
−
[γns1 γ̂1 − γns2 γ̂2

γs1 − γs2

][γ(n+m+k)s
1 γ̂1 − γ

(n+m+k)s
2 γ̂2

γs1 − γs2

]
=

1

(γs1 − γs2)
2

[
− γ

(n+m)s
1 γ

(n+k)s
2 γ̂1γ̂2

+ γns1 γ
(n+m+k)s
2 γ̂1γ̂2 − γ

(n+m)s
2 γ

(n+k)s
1 γ̂2γ̂1

+ γns2 γ
(n+m+k)s
1 γ̂2γ̂1

]
=

1

(γs1 − γs2)
2
γns1 γns2

[
− γms

1 γks2 γ̂1γ̂2 + γ
(m+k)s
2 γ̂1γ̂2

− γ
(n+m)s
2 γ

(n+k)s
1 γ̂2γ̂1 + γns2 γ

(n+m+k)s
1 γ̂2γ̂1

]
=

1

(γs1 − γs2)
2

[
− γks2 γ̂1γ̂2(γ

ms
1 − γms

2 )

+ γks1 γ̂2γ̂1(γ
ms
1 − γms

2 )
]
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=
(γms

1 − γms
2 )(γks1 γ̂2γ̂1 − γks2 γ̂1γ̂2)

(γs1 − γs2)
2

=
B

(s)
m (γks1 γ̂2γ̂1 − γks2 γ̂1γ̂2)

γs1 − γs2
.

Which completes the proof. □

Corollary 2.3 (Catalan’s identity). Let n, k ∈ Z+ be such that n ≥ k, then we have

HCB(s)
n−kHCB(s)

n+k − (HCB(s)
n )2 =

−Bs
k(γ

ks
1 γ̂2γ̂1 − γks2 γ̂1γ̂2)

γs1 − γs2
.

Proof. For m = −k in Theorem 2.6 and using the result B−n = −Bn, we obtain the
required result. □

Corollary 2.4 (Cassini’s identity). For n ∈ Z+, then we have

HCB(s)
n−1HCB(s)

n+1 − (HCB(s)
n )2 =

γs2γ̂1γ̂2 − γs1γ̂2γ̂1
γs1 − γs2

.

Proof. For k = 1 in Corollary 2.3, by Equation 3, we have

HCB(s)
n−1HCB(s)

n+1 − (HCB(s)
n )2 =

−Bs
1(γ

s
1γ̂2γ̂1 − γs2γ̂1γ̂2)

γs1 − γs2

=
−(γs1γ̂2γ̂1 − γs2γ̂1γ̂2)

γs1 − γs2

=
γs2γ̂1γ̂2 − γs1γ̂2γ̂1

γs1 − γs2
.

This completes the proof. □

Corollary 2.5 (d’Ocagne’s identity). Let n ∈ N, t ∈ Z+ such that t > n+1. Then we get

HCB(s)
n+1HCB(s)

t −HCB(s)
n HCB(s)

t+1 =
(γ

(t−n)s
1 γ̂2γ̂1 − γ

(t−n)s
2 γ̂1γ̂2)

γs1 − γs2
.

Proof. For m = 1 and k = t− n in Theorem 2.6 and by using Equation 3, we find

HCB(s)
n+1HCB(s)

t −HCB(s)
n HCB(s)

t+1 =
Bs

1(γ
(t−n)s
1 γ̂2γ̂1 − γ

(t−n)s
2 γ̂1γ̂2)

γs1 − γs2

=
(γ

(t−n)s
1 γ̂2γ̂1 − γ

(t−n)s
2 γ̂1γ̂2)

γs1 − γs2
.

Hence, the desired result is obtained. □

3. A matrix representation for higher order balancing 2r-ions

In this section, we obtain the matrix representation of the higher-order balancing 2r-
ions. We define two matrices A(s) and B(s) as

A(s) =

[
2Ds −1
1 0

]
and B(s) =

[
HCB(s)

2 HCB(s)
1

HCB(s)
1 HCB(s)

0

]
, (5)

where Ds is the Lucas-balancing number. In light of our conclusion, we provide the
following theorem.
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Theorem 3.1. For n ∈ N, then we get

(A(s))nB(s) =

[
HCB(s)

n+2 HCB(s)
n+1

HCB(s)
n+1 HCB(s)

n

]
.

Proof. We use the induction method on n to prove the theorem. For n = 0, the equality
holds. Assume that the hypothesis is true for n = i. Namely,

(A(s))iB(s) =

[
HCB(s)

i+2 HCB(s)
i+1

HCB(s)
i+1 HCB(s)

i

]
. (6)

For n = i+ 1, by Equation 6 and Theorem 2.2, we obtain

(A(s))i+1B(s) = A(s)(A(s))iB(s)

=

[
2Ds −1
1 0

][
HCB(s)

i+2 HCB(s)
i+1

HCB(s)
i+1 HCB(s)

i

]

=

[
2DsHCB(s)

i+2 −HCB(s)
i+1 2DsHCB(s)

i+1 −HCB(s)
i

HCB(s)
i+2 HCB(s)

i

]

=

[
HCB(s)

i+3 HCB(s)
i+2

HCB(s)
i+2 HCB(s)

i+1

]
.

Therefore, the proof is completed. □

By using the matrices mentioned above, we generate Cassini’s identity for higher-order
balancing 2r-ions in the following corollary.

Corollary 3.1. For n ∈ Z+, then we get

HCB(s)
n+1HCB(s)

n−1 − (HCB(s)
n )2 = (−1)n−1[HCB(s)

2 HCB(s)
0 − (HCB(s)

1 )2].

Proof. From Equation 6 and Theorem 3.1, we have[
2Ds −1
1 0

]n−1
[
HCB(s)

2 HCB(s)
1

HCB(s)
1 HCB(s)

0

]
=

[
HCB(s)

n+1 HCB(s)
n

HCB(s)
n HCB(s)

n−1

]
. (7)

If we take the determinant on both sides of Equation 7 , then we find that

HCB(s)
n+1HCB(s)

n−1 − (HCB(s)
n )2 = (−1)n−1[HCB(s)

2 HCB(s)
0 − (HCB(s)

1 )2].

□

4. Conclusions

In summary, we introduce the higher-order balancing 2r-ions and present Binet’s for-
mula, Vajda’s identity, Catalan’s identity, Cassini’s identity, and d’Ocagne’s identity, or-
dinary (and exponential) generating functions, and give matrix representation for this
sequence.

In future, it would be interesting to study the higher-order balancing quaternions,
octonions, sedenions, trigintaduonions, and higher-order balancing hyper dual numbers.
In addition, it’s application in matrix algebra, spinor algebra and cryptography may be
explored.
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