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EXPLORING FRACTIONAL CALCULUS OPERATORS IN CONTEXT

WITH EXTENDED HYPERGEOMETRIC AND CONFLUENT

HYPERGEOMETRIC FUNCTION: IMAGE FORMULAS AND

APPLICATIONS

A. CHANDOLA1, M. KUMAR MISHRA2∗, §

Abstract. Fractional calculus in mathematics has various applications in engineering
and science, inequality theory and is also used in solving various integral equations. In
the past few years, fractional calculus operators that contains different special functions
have been discussed by many researchers. In our paper, our objective is to discuss image
formulas for different fractional integral and differential operators using the extended
hypergeometric and extended confluent hypergeometric function involving Appell series
and Lauricella function. Fractional calculus operators that has Appell function in the
kernel and Saigo fractional operator are used in this paper. The results investigated in
this manuscript are general, novel and are used to discuss various special cases and more
fascinating results involving other special functions and fractional calculus operators. We
have also discussed the application and future scope along with a brief comparison with
the existing literature.

Keywords: Image formula, Extended hypergeometric function, Extended confluent hy-
pergeometric function, Fractional calculus, Saigo fractional operator.
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1. Introduction

Fractional Calculus in mathematics involves the investigation of derivatives and integrals
of any arbitrary order, real or complex. The subject has gained a lot of admiration and
acceptance in last few decades because of its different applications in the areas of science
and engineering like visco-elasticity, optics, oscillation, diffusion, electrochemistry, wave
propagation and various others. (see, e.g., [1, 2, 6, 7, 4, 3, 5]). It was around eighteenth
century when several mathematicians, namely Fourier, Abel, Liouville, and Riemann were

1 School of Computer Science and Engineering, R V University, RV Vidyanikethan Post, 8th Mile,
Mysore Road, Mailasandra, Bengaluru, 560059, Karnataka, India.
e-mail: achandola95@gmail.com; https://orcid.org/0000-0002-0768-4332.

2 Department of Mechanical Engineering, School of Engineering, Dayananda Sagar University, Devarak-
aggalahalli, Harohalli Kanakapura Road, Dt, Ramanagara, 562112, Karnataka, India.
manish0546@gmail.com; https://orcid.org/0000-0001-7036-8714.

∗ Corresponding author.
§ Manuscript received: December 30, 2024; accepted: April 28, 2025.
TWMS Journal of Applied and Engineering Mathematics, Vol.16, No.2; © Işık University, Depart-
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involved in the development of fractional calculus.

Several authors have introduced the generalization of various special functions, frac-
tional operators associated with certain special functions (see, e.g., [8, 10, 12, 9, 21, 22, 24])
and their applications [20, 23]. A new extension of beta function was introduced that in-
volved Appell series and Lauricella function [8]. For Appell series and Lauricella function
refer [13, Eq.(1.4.1-1.4.4), p.23; Eq.(2.1.1-2.1.4), pg.41 ] respectively.

In the same paper [8], extended Gauss hypergeometric and confluent hypergeometric
functions were introduced involving the extended beta function.

Definition 1.1. The new extension of Gauss hypergeometric function containing Appell
series F1(.) ,where ℜ(ϱ3) > ℜ(ϱ2) > 0, with ℜ(p),ℜ(q) ≥ 0 and |α| < 1 is given by [8, Eq.
(44), p.10]

FF1
p,q(ϱ1, ϱ2; ϱ3;α) =

∞∑
n=0

(ϱ1)n
BF1

p,q(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!
. (1)

Definition 1.2. Let ℜ(ϱ3) > ℜ(ϱ2) > 0 with ℜ(p),ℜ(q) ≥ 0 and |α| < 1, then the
extension of confluent hypergeometric function containing Appell series F1(.) is given by
[8, Eq. (45), p.10]

ΦF1
p,q (ϱ2; ϱ3;α) =

∞∑
n=0

BF1
p,q(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!
, (2)

where

BF1
p,q(ϱ1, ϱ2) =

∫ 1

0
tϱ1−1(1− t)ϱ2−1F1

(
a1, b

′
1, c

′′
1; d;

p

tr
,

q

(1− t)r

)
dt, (3)

is the generalized beta function involving Appell series F1(.) [8, Eq.(20), p.4], with
ℜ(a1),ℜ(b′1),ℜ(c′′1),ℜ(d) > 0, ℜ(p),ℜ(q) ≥ 0,ℜ(ϱ1) > 0 and ℜ(ϱ2) > 0.

The extension of Gauss hypergeometric and confluent hypergeometric function involving

Appell series F2(.), F3(.), F4(.) and Lauricella function F
(m)
A , F

(m)
B , F

(m)
C and F

(m)
D are

defined in the similar way [8].

The main objective of this research work is to investigate and examine the relation
and application of fractional calculus operators such as operators with Appell function in
the kernel ands Saigo operators to extended hypergeometric and confluent hypergeometric
functions.
The study intends to create a thorough framework for integrating fractional calculus op-
erators with extended hypergeometric and confluent hypergeometric functions. Explore
the theoretical foundations and derivations of these operators in relation to these functions.

In section 2, we have discussed the relation of the generalized hypergeometric function
and generalized confluent hypergeometric function with fractional integral operator in-
volving Appell function in the kernel. The results for Gauss hypergeometric and confluent
hypergeometric function are discussed as special cases. In section 3, we have discussed
results for the generalized hypergeometric function and generalized confluent hypergeo-
metric function with fractional differential operator involving Appell function in the kernel,
along with the special cases. In section 4, results involving Saigo fractional operator is
investigated. Section 5, deals with the conclusion, comparative study and novelty of our
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research work. Section 6 mentions certain applications and future scope related to our
research work.

2. Image formulas involving the Fractional Integral Operator with
Appell function in the kernel

Definition 2.1. The fractional integral operator with the Appell function F3(.) in the
kernel [14] is(

Iγ,γ
′,ϵ,ϵ′,η

0+
f
)
(y) =

y−γ

Γ(η)

∫ y

0
(y − t)η−1t−γ′

F3

(
γ, γ′, ϵ, ϵ′; η; 1− t

y
, 1− y

t

)
f(t)dt, (4)

(
Iγ,γ

′,ϵ,ϵ′,η
0− f

)
(y) =

y−γ′

Γ(η)

∫ ∞

y
(t− y)η−1t−γF3

(
γ, γ′, ϵ, ϵ′; η; 1− t

y
, 1− y

t

)
f(t)dt, (5)

where γ, γ′, ϵ, ϵ′, η ∈ C,ℜ(η) > 0 and y ∈ R+.

We will use the following Lemmas [15] in our main result.

Lemma 2.1. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(η) > 0, ℜ(γ) > max{0,ℜ(γ−γ′−ϵ−η),ℜ(γ′−ϵ′)},
then(

Iγ,γ
′,ϵ,ϵ′,η

0+
tξ−1

)
(y) =

Γ(ξ)Γ(ξ + η − γ − γ′ − ϵ)Γ(ξ + ϵ′ − γ′)

Γ(ξ + ϵ′)Γ(ξ + η − γ − γ′)Γ(ξ + η − γ′ − ϵ)
yξ−γ−γ′+η−1. (6)

Lemma 2.2. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(η) > 0, ℜ(ξ) > max{ℜ(ϵ),ℜ(−γ−γ′+ η),ℜ(−γ−
ϵ′ + η)}, then(

Iγ,γ
′,ϵ,ϵ′,η

0− t−ξ
)
(y) =

Γ(−ϵ+ ξ)Γ(γ + γ′ − η + ξ)Γ(γ + ϵ′ − η + ξ)

Γ(ξ)Γ(γ − ϵ+ ξ)Γ(γ + γ′ + ϵ′ − η + ξ)
y−γ−γ′+η−ξ. (7)

2.1. For the Generalized Hypergeometric Function.

Theorem 2.1. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(η) > 0, ℜ(γ) > max{0,ℜ(γ − γ′ − ϵ− η),ℜ(γ′ −
ϵ′)}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt| < 1. Then(

Iγ,γ
′,ϵ,ϵ′,η

0+

[
tϕ−1FF1

p1,p2(ϱ1, ϱ2; ϱ3;αt)
])

(x)

= xϕ−γ−γ′+η−1 Γ(ϕ)Γ(ϕ+ η − γ − γ′ − ϵ)Γ(ϕ+ ϵ′ − γ′)

Γ(ϕ+ ϵ′)Γ(ϕ+ η − γ − γ′)Γ(ϕ+ η − γ′ − ϵ)
FF1
p1,p2(ϱ1, ϱ2; ϱ3;αx)

∗ 4F3

 ϕ ϕ+ η − γ − γ′ − ϵ ϕ+ ϵ′ − γ′ 1

ϕ+ ϵ′ ϕ+ η − γ − γ′ ϕ+ η − γ′ − ϵ
;αx

 . (8)

Proof. Consider

LHS =
(
Iγ,γ

′,ϵ,ϵ′,η
0+

[
tϕ−1FF1

p1,p2(ϱ1, ϱ2; ϱ3;αt)
])

(x)

=

(
Iγ,γ

′,ϵ,ϵ′,η
0+

[
tϕ−1

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(αt)n

n!

])
(x)

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Iγ,γ

′,ϵ,ϵ′,η
0+

tϕ+n−1
]
(x). (9)
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Using Lemma 2.1 in the above equation (9), we get

LHS =

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(ϕ+ n)Γ(ϕ+ n+ η − γ − γ′ − ϵ)

Γ(ϕ+ n+ ϵ′)Γ(ϕ+ n+ η − γ − γ′)

× Γ(ϕ+ n+ ϵ′ − γ′)

Γ(ϕ+ n+ η − γ′ − ϵ)
xϕ+n−γ−γ′+η−1

=
Γ(ϕ)Γ(ϕ+ η − γ − γ′ − ϵ)Γ(ϕ+ ϵ′ − γ′)

Γ(ϕ+ ϵ′)Γ(ϕ+ η − γ − γ′)Γ(ϕ+ η − γ′ − ϵ)

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× xϕ+n−γ−γ′+η−1 (ϕ)n(ϕ+ η − γ − γ′ − ϵ)n(ϕ+ ϵ′ − γ′)n
(ϕ+ ϵ′)n(ϕ+ η − γ − γ′)n(ϕ+ η − γ′ − ϵ)n

. (10)

Using Hadamard Product in (10), we get

LHS =
Γ(ϕ)Γ(ϕ+ η − γ − γ′ − ϵ)Γ(ϕ+ ϵ′ − γ′)

Γ(ϕ+ ϵ′)Γ(ϕ+ η − γ − γ′)Γ(ϕ+ η − γ′ − ϵ)
xϕ−γ−γ′+η−1

×
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!
(αx)n

(ϕ)n(ϕ+ η − γ − γ′ − ϵ)n(ϕ+ ϵ′ − γ′)n
(ϕ+ ϵ′)n(ϕ+ η − γ − γ′)n(ϕ+ η − γ′ − ϵ)n

× (1)n
n!

.

= xϕ−γ−γ′+η−1 Γ(ϕ)Γ(ϕ+ η − γ − γ′ − ϵ)Γ(ϕ+ ϵ′ − γ′)

Γ(ϕ+ ϵ′)Γ(ϕ+ η − γ − γ′)Γ(ϕ+ η − γ′ − ϵ)
FF1
p1,p2(ϱ1, ϱ2; ϱ3;αx)

∗ 4F3

 ϕ ϕ+ η − γ − γ′ − ϵ ϕ+ ϵ′ − γ′ 1

ϕ+ ϵ′ ϕ+ η − γ − γ′ ϕ+ η − γ′ − ϵ
;αx

 .

Hence, the desired result (8). □

Theorem 2.2. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(η) > 0, ℜ(ξ) > max{ℜ(ϵ),ℜ(−γ−γ′+η),ℜ(−γ−
ϵ′ + η)}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt | < 1,(

Iγ,γ
′,ϵ,ϵ′,η

0−

[
t−ϕFF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

= x−γ−γ′+η−ϕΓ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

Γ(ϕ)Γ(γ − ϵ+ ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)
FF1
p1,p2(ϱ1, ϱ2; ϱ3;

α

x
)

∗ 4F3

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ 1

ϕ ϕ+ γ − ϵ+ ϕ γ + γ′ + ϵ′ − η + ϕ
;
α

x

 . (11)

Proof. Consider

LHS =
(
Iγ,γ

′,ϵ,ϵ′,η
0−

[
t−ϕFF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

=

(
Iγ,γ

′,ϵ,ϵ′,η
0−

[
t−ϕ

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!

(α
t

)n])
(x).

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Iγ,γ

′,ϵ,ϵ′,η
0− t−ϕ−n

]
(x). (12)
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Using Lemma 2.2 in the above equation (12), we get

LHS =
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(−ϵ+ ϕ+ n)Γ(γ + γ′ − η + ϕ+ n)

Γ(ϕ+ n)Γ(γ − ϵ+ ϕ+ n)

× Γ(γ + ϵ′ − η + ϕ+ n)

Γ(γ + γ′ + ϵ′ − η + ϕ+ n)
x−γ−γ′+η−ϕ−n

=
Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

Γ(ϕ)Γ(γ − ϵ+ ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× x−γ−γ′+η−ϕ−n (−ϵ+ ϕ)n(γ + γ′ − η + ϕ)n(γ + ϵ′ − η + ϕ)n
(ϱ+ ϵ′)n(ϱ+ η − γ − γ′)n(ϱ+ η − γ′ − ϵ)n

. (13)

Using Hadamard Product in (13), we get

LHS =
Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

Γ(ϕ)Γ(γ − ϵ+ ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)
x−γ−γ′+η−ϕ

×
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!
(
α

x
)n

(−ϵ+ ϕ)n(γ + γ′ − η + ϕ)n(γ + ϵ′ − η + ϕ)n
(ϱ+ ϵ′)n(ϱ+ η − γ − γ′)n(ϱ+ η − γ′ − ϵ)n

× (1)n
n!

= x−γ−γ′+η−ϕΓ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

Γ(ϕ)Γ(γ − ϵ+ ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)
FF1
p1,p2(ϱ1, ϱ2; ϱ3;

α

x
)

∗ 4F3

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ 1

ϕ ϕ+ γ − ϵ+ ϕ γ + γ′ + ϵ′ − η + ϕ
;
α

x

 .

Hence, the desired result (11). □

Special Cases
When p2 = 0 and, if p1 = 1, r = 0, a1, b

′
1, d = 1, theorems 2.1 and 2.2 give the results for

the Gauss hypergeometric function.

Corollary 2.1. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(η) > 0, ℜ(γ) > max{0,ℜ(γ− γ′− ϵ− η),ℜ(γ′−
ϵ′)}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt| < 1. Then(

Iγ,γ
′,ϵ,ϵ′,η

0+

[
tϕ−1

2F1(ϱ1, ϱ2; ϱ3;αt)
])

(x)

= xϕ−γ−γ′+η−1 Γ(ϕ)Γ(ϕ+ η − γ − γ′ − ϵ)Γ(ϕ+ ϵ′ − γ′)

Γ(ϕ+ ϵ′)Γ(ϕ+ η − γ − γ′)Γ(ϕ+ η − γ′ − ϵ)
2F1(ϱ1, ϱ2; ϱ3;αx)

∗ 4F3

 ϕ ϕ+ η − γ − γ′ − ϵ ϕ+ ϵ′ − γ′ 1

ϕ+ ϵ′ ϕ+ η − γ − γ′ ϕ+ η − γ′ − ϵ
;αx

 . (14)
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Corollary 2.2. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(η) > 0, ℜ(ξ) > max{ℜ(ϵ),ℜ(−γ−γ′+η),ℜ(−γ−
ϵ′ + η)}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt | < 1,(

Iγ,γ
′,ϵ,ϵ′,η

0−

[
t−ϕ

2F1

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

= x−γ−γ′+η−ϕΓ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

Γ(ϕ)Γ(γ − ϵ+ ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)
2F1(ϱ1, ϱ2; ϱ3;

α

x
)

∗ 4F3

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ 1

ϕ ϕ+ γ − ϵ+ ϕ γ + γ′ + ϵ′ − η + ϕ
;
α

x

 . (15)

2.2. For the Generalized Confluent Hypergeometric Function.

Theorem 2.3. Suppose γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(η) > 0, ℜ(γ) > max{0,ℜ(γ − γ′ − ϵ −
η),ℜ(γ′ − ϵ′)}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt| < 1. Then(

Iγ,γ
′,ϵ,ϵ′,η

0+

[
tϕ−1ΨF1

p1,p2(ϱ2; ϱ3;αt)
])

(x)

= xϕ−γ−γ′+η−1 Γ(ϕ)Γ(ϕ+ η − γ − γ′ − ϵ)Γ(ϕ+ ϵ′ − γ′)

Γ(ϕ+ ϵ′)Γ(ϕ+ η − γ − γ′)Γ(ϕ+ η − γ′ − ϵ)
ΨF1

p1,p2(ϱ2; ϱ3;αx)

∗ 4F3

 ϕ ϕ+ η − γ − γ′ − ϵ ϕ+ ϵ′ − γ′ 1

ϕ+ ϵ′ ϕ+ η − γ − γ′ ϕ+ η − γ′ − ϵ
;αx

 . (16)

Proof. Consider

LHS =
(
Iγ,γ

′,ϵ,ϵ′,η
0+

[
tϕ−1ΨF1

p1,p2(ϱ2; ϱ3;αt)
])

(x)

=

(
Iγ,γ

′,ϵ,ϵ′,η
0+

[
tϕ−1

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(αt)n

n!

])
(x)

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Iγ,γ

′,ϵ,ϵ′,η
0+

tϕ+n−1
]
(x). (17)

Using Lemma 2.1 in the above equation (17), we get

LHS =
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(ϕ+ n)Γ(ϕ+ n+ η − γ − γ′ − ϵ)

Γ(ϕ+ n+ ϵ′)Γ(ϕ+ n+ η − γ − γ′)

× Γ(ϕ+ n+ ϵ′ − γ′)

Γ(ϕ+ n+ η − γ′ − ϵ)
xϕ+n−γ−γ′+η−1

=
Γ(ϕ)Γ(ϕ+ η − γ − γ′ − ϵ)Γ(ϕ+ ϵ′ − γ′)

Γ(ϕ+ ϵ′)Γ(ϕ+ η − γ − γ′)Γ(ϕ+ η − γ′ − ϵ)

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× xϕ+n−γ−γ′+η−1 (ϕ)n(ϕ+ η − γ − γ′ − ϵ)n(ϕ+ ϵ′ − γ′)n
(ϕ+ ϵ′)n(ϕ+ η − γ − γ′)n(ϕ+ η − γ′ − ϵ)n

. (18)
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Using Hadamard Product in (18), we get

LHS =
Γ(ϕ)Γ(ϕ+ η − γ − γ′ − ϵ)Γ(ϕ+ ϵ′ − γ′)

Γ(ϕ+ ϵ′)Γ(ϕ+ η − γ − γ′)Γ(ϕ+ η − γ′ − ϵ)
xϕ−γ−γ′+η−1

×
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!
(αx)n

(ϕ)n(ϕ+ η − γ − γ′ − ϵ)n(ϕ+ ϵ′ − γ′)n
(ϕ+ ϵ′)n(ϕ+ η − γ − γ′)n(ϕ+ η − γ′ − ϵ)n

(1)n
n!

.

= xϕ−γ−γ′+η−1 Γ(ϕ)Γ(ϕ+ η − γ − γ′ − ϵ)Γ(ϕ+ ϵ′ − γ′)

Γ(ϕ+ ϵ′)Γ(ϕ+ η − γ − γ′)Γ(ϕ+ η − γ′ − ϵ)
ΨF1

p1,p2(ϱ2; ϱ3;αx)

∗ 4F3

 ϕ ϕ+ η − γ − γ′ − ϵ ϕ+ ϵ′ − γ′ 1

ϕ+ ϵ′ ϕ+ η − γ − γ′ ϕ+ η − γ′ − ϵ
;αx

 .

Hence, we get the desired result (16). □

Theorem 2.4. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(η) > 0, ℜ(ξ) > max{ℜ(ϵ),ℜ(−γ−γ′+η),ℜ(−γ−
ϵ′ + η)}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt | < 1,(

Iγ,γ
′,ϵ,ϵ′,η

0−

[
t−ϕΨF1

p1,p2

(
ϱ2; ϱ3;

α

t

)])
(x)

= x−γ−γ′+η−ϕΓ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

Γ(ϕ)Γ(γ − ϵ+ ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)
ΨF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

x

)
∗ 4F3

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ 1

ϕ ϕ+ γ − ϵ+ ϕ γ + γ′ + ϵ′ − η + ϕ
;
α

x

 . (19)

Proof. Consider

LHS =
(
Iγ,γ

′,ϵ,ϵ′,η
0−

[
t−ϕΨF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

=

(
Iγ,γ

′,ϵ,ϵ′,η
0−

[
t−ϕ

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!

(α
t

)n])
(x).

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Iγ,γ

′,ϵ,ϵ′,η
0− t−ϕ−n

]
(x). (20)

Using Lemma 2.2 in the above equation (20), we get

LHS =
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(−ϵ+ ϕ+ n)Γ(γ + γ′ − η + ϕ+ n)

Γ(ϕ+ n)Γ(γ − ϵ+ ϕ+ n)

× Γ(γ + ϵ′ − η + ϕ+ n)

Γ(γ + γ′ + ϵ′ − η + ϕ+ n)
x−γ−γ′+η−ϕ−n

=
Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

Γ(ϕ)Γ(γ − ϵ+ ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× x−γ−γ′+η−ϕ−n (−ϵ+ ϕ)n(γ + γ′ − η + ϕ)n(γ + ϵ′ − η + ϕ)n
(ϱ+ ϵ′)n(ϱ+ η − γ − γ′)n(ϱ+ η − γ′ − ϵ)n

. (21)
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Using Hadamard Product in (21), we get

LHS =
Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

Γ(ϕ)Γ(γ − ϵ+ ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)
x−γ−γ′+η−ϕ

×
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!

(α
x

)n (−ϵ+ ϕ)n(γ + γ′ − η + ϕ)n(γ + ϵ′ − η + ϕ)n
(ϱ+ ϵ′)n(ϱ+ η − γ − γ′)n(ϱ+ η − γ′ − ϵ)n

× (1)n
n!

= x−γ−γ′+η−ϕΓ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

Γ(ϕ)Γ(γ − ϵ+ ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)
ΨF1

p1,p2

(
ϱ2; ϱ3;

α

x

)
∗ 4F3

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ 1

ϕ ϕ+ γ − ϵ+ ϕ γ + γ′ + ϵ′ − η + ϕ
;
α

x

 .

Hence, the desired result (19). □

Special Cases
When p2 = 0 and, if p1 = 1, r = 0, a1, b

′
1, d = 1, theorems 2.3 and 2.4 give the results for

the confluent hypergeometric function.

Corollary 2.3. If γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(η) > 0, ℜ(γ) > max{0,ℜ(γ−γ′−ϵ−η),ℜ(γ′−ϵ′)},
ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt| < 1. Then(

Iγ,γ
′,ϵ,ϵ′,η

0+

[
tϕ−1

1Ψ1(ϱ2; ϱ3;αt)
])

(x)

= xϕ−γ−γ′+η−1 Γ(ϕ)Γ(ϕ+ η − γ − γ′ − ϵ)Γ(ϕ+ ϵ′ − γ′)

Γ(ϕ+ ϵ′)Γ(ϕ+ η − γ − γ′)Γ(ϕ+ η − γ′ − ϵ)
1Ψ1(ϱ2; ϱ3;αx)

∗ 4F3

 ϕ ϕ+ η − γ − γ′ − ϵ ϕ+ ϵ′ − γ′ 1

ϕ+ ϵ′ ϕ+ η − γ − γ′ ϕ+ η − γ′ − ϵ
;αx

 . (22)

Corollary 2.4. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(η) > 0, ℜ(ξ) > max{ℜ(ϵ),ℜ(−γ−γ′+η),ℜ(−γ−
ϵ′ + η)}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt | < 1,(

Iγ,γ
′,ϵ,ϵ′,η

0−

[
t−ϕ

1Ψ1

(
ϱ2; ϱ3;

α

t

)])
(x)

= x−γ−γ′+η−ϕΓ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

Γ(ϕ)Γ(γ − ϵ+ ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)
1Ψ1(ϱ2; ϱ3;

α

x
)

∗ 4F3

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ 1

ϕ ϕ+ γ − ϵ+ ϕ γ + γ′ + ϵ′ − η + ϕ
;
α

x

 . (23)

3. Image formula using fractional differential operator associated with
the Appell function

Definition 3.1. The fractional differential operator with the Appell function F3(.) in the
kernel [14] are(

Dγ,γ′,ϵ,ϵ′,η
0− f

)
(y) =

(
− d

dy

)[ℜ(η)]+1 (
I
−γ′,−γ,−ϵ′,−ϵ+[ℜ(η)]+1,−η+[ℜ(η)]+1
0− f

)
(y) (24)
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and (
Dγ,γ′,ϵ,ϵ′,η

0+
f
)
(y) =

(
d

dy

)[ℜ(η)]+1 (
I
−γ′,−γ,−ϵ′+[ℜ(η)]+1,−ϵ,−η+[ℜ(η)]+1
0+

f
)
(y), (25)

where γ, γ′, ϵ, ϵ′, η ∈ C,ℜ(η) > 0 and y ∈ R+.

We will use the following Lemmas [15] in our main result.

Lemma 3.1. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(ξ) > max{0,ℜ(−γ+ ϵ′),ℜ(−γ− γ′ − ϵ+ η)}, then(
Dγ,γ′,ϵ,ϵ′,η

0+
tξ−1

)
(y) =

Γ(ξ)Γ(−ϵ+ γ + ξ)Γ(γ + γ′ + ϵ′ − η + ξ)

Γ(−ϵ+ ξ)Γ(γ + γ′ − η + ξ)Γ(γ + ϵ′ − η + ξ)
yγ+γ′−η+ξ−1. (26)

Lemma 3.2. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(ξ) > max{ℜ(−ϵ′),ℜ(γ′ + ϵ − η),ℜ(γ + γ′ − η) +
[ℜ(η)] + 1}, then(

Dγ,γ′,ϵ,ϵ′,η
0− t−ξ

)
(y) =

Γ(ϵ′ + ξ)Γ(−γ − γ′ + η + ξ)Γ(−γ′ − ϵ+ η + ξ)

Γ(ξ)Γ(−γ′ + ϵ′ + ξ)Γ(−γ − γ′ − ϵ+ η + ξ)
yγ+γ′−η−ξ. (27)

3.1. For the Generalized Hypergeometric Function.

Theorem 3.1. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(ξ) > max{0,ℜ(−γ + ϵ′),ℜ(−γ − γ′ − ϵ + η)},
ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt| < 1, then(

Dγ,γ′,ϵ,ϵ′,η
0+

[
tϕ−1FF1

p1,p2(ϱ1, ϱ2; ϱ3;αt)
])

(x)

= xγ+γ′−η+ϕ−1 Γ(ϕ)Γ(−ϵ+ γ + ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)
FF1
p1,p2(ϱ1, ϱ2; ϱ3;αx)

∗ 4F3

 ϕ −ϵ+ γ + ϕ γ + γ′ + ϵ′ − η + ϕ 1

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ
;αx

 . (28)

Proof. Consider

LHS =
(
Dγ,γ′,ϵ,ϵ′,η

0+

[
tϕ−1FF1

p1,p2(ϱ1, ϱ2; ϱ3;αt)
])

(x)

=

(
Dγ,γ′,ϵ,ϵ′,η

0+

[
tϕ−1

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(αt)n

n!

])
(x)

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Dγ,γ′,ϵ,ϵ′,η

0+
tϕ+n−1

]
(x). (29)

Using Lemma 3.1 in the above equation (29), we get

LHS =
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(ϕ+ n)Γ(−ϵ+ γ + ϕ+ n)

Γ(−ϵ+ ϕ+ n)Γ(γ + γ′ − η + ϕ+ n)

× Γ(γ + γ′ + ϵ′ − η + ϕ+ n)

Γ(γ + ϵ′ − η + ϕ+ n)
xγ+γ′−η+n−1

=
Γ(ϕ)Γ(−ϵ+ γ + ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× xγ+γ′−η+ϕ+n−1 (ϕ)n(−ϵ+ γ + ϕ)n(γ + γ′ + ϵ′ − η + ϕ)n
(ϵ+ ϕ)n(γ + γ′ − η + ϕ)n(γ + ϵ′ − η + ϕ)n

. (30)
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Using Hadamard Product in (30), we get

LHS =
Γ(ϕ)Γ(−ϵ+ γ + ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)
xγ+γ′−η+ϕ−1

×
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!
(αx)n

(ϕ)n(−ϵ+ γ + ϕ)n(γ + γ′ + ϵ′ − η + ϕ)n
(ϵ+ ϕ)n(γ + γ′ − η + ϕ)n(γ + ϵ′ − η + ϕ)n

× (1)n
n!

.

= xγ+γ′−η+ϕ−1 Γ(ϕ)Γ(−ϵ+ γ + ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)
FF1
p1,p2(ω1, ω2;ω3;αx)

∗ 4F3

 ϕ −ϵ+ γ + ϕ γ + γ′ + ϵ′ − η + ϕ 1

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ
;αx

 .

Hence, the desired result (28). □

Theorem 3.2. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C such that ℜ(ξ) > max{ℜ(−ϵ′),ℜ(γ′ + ϵ− η),ℜ(γ +
γ′ − η) + [ℜ(η)] + 1}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt | < 1. Then(

Dγ,γ′,ϵ,ϵ′,η
0−

[
t−ϕFF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

= xγ+γ′−η−ϕΓ(ϵ
′ + ϕ)Γ(−γ − γ′ + η + ϕ)Γ(−γ′ − ϵ+ η + ϕ)

Γ(ϕ)Γ(−γ′ − ϵ′ + ϕ)Γ(−γ − γ′ − ϵ+ η + ϕ)
FF1
p1,p2

(
ϱ1, ϱ2; ϱ3;

α

x

)
∗ 4F3

ϵ′ + ϕ −γ − γ′ + η + ϕ −γ′ − ϵ+ η + ϕ 1

ϕ −γ′ − ϵ′ + ϕ −γ − γ′ − ϵ+ η + ϕ
;
α

x

 . (31)

Proof. Consider

LHS =
(
Dγ,γ′,ϵ,ϵ′,η

0−

[
t−ϕFF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

=

(
Dγ,γ′,ϵ,ϵ′,η

0+

[
t−ϕ

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

αn

tnn!

])
(x).

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Dγ,γ′,ϵ,ϵ′,η

0+
t−ϕ−n

]
(x). (32)

Using Lemma 3.2 in the above equation (32), we get

LHS =
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(ϵ′ + ϕ+ n)Γ(−γ − γ′ + η + ϕ+ n)

Γ(ϕ+ n)Γ(−γ′ − ϵ′ + ϕ+ n)

× Γ(−γ′ − ϵ+ η + ϕ+ n)

Γ(−γ − γ′ − ϵ+ η + ϕ+ n)
xγ+γ′−η−n−ϕ

=
Γ(ϵ′ + ϕ)Γ(−γ − γ′ + η + ϕ)Γ(−γ′ − ϵ+ η + ϕ)

Γ(ϕ)Γ(−γ′ − ϵ′ + ϕ)Γ(−γ − γ′ − ϵ+ η + ϕ)

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

× (α)n

n!
xγ+γ′−η+ϕ−n (ϵ

′ + ϕ)n(−γ − γ′ + η + ϕ)n(−γ′ − ϵ+ η + ϕ)n
(ϕ)n(−γ′ − ϵ′ + ϕ)n(−γ − γ′ − ϵ+ η + ϕ)n

. (33)
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Using Hadamard Product in (33), we get

LHS =
Γ(ϵ′ + ϕ)Γ(−γ − γ′ + η + ϕ)Γ(−γ′ − ϵ+ η + ϕ)

Γ(ϕ)Γ(−γ′ − ϵ′ + ϕ)Γ(−γ − γ′ − ϵ+ η + ϕ)
xγ+γ′−η+ϕ

×
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!

(α
x

)n
× (ϵ′ + ϕ)n(−γ − γ′ + η + ϕ)n(−γ′ − ϵ+ η + ϕ)n

(ϕ)n(−γ′ − ϵ′ + ϕ)n(−γ − γ′ − ϵ+ η + ϕ)n

(1)n
n!

.

= xγ+γ′−η−ϕΓ(ϵ
′ + ϕ)Γ(−γ − γ′ + η + ϕ)Γ(−γ′ − ϵ+ η + ϕ)

Γ(ϕ)Γ(−γ′ − ϵ′ + ϕ)Γ(−γ − γ′ − ϵ+ η + ϕ)
FF1
p1,p2

(
ϱ1, ϱ2; ϱ3;

α

x

)
∗ 4F3

ϵ′ + ϕ −γ − γ′ + η + ϕ −γ′ − ϵ+ η + ϕ 1

ϕ −γ′ − ϵ′ + ϕ −γ − γ′ − ϵ+ η + ϕ
;
α

x

 .

Hence, the desired result (31). □

Special Cases
When p2 = 0 and, if p1 = 1, r = 0, a1, b

′
1, d = 1, theorems 3.1 and 3.2 give the results for

the Gauss hypergeometric function.

Corollary 3.1. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(ξ) > max{0,ℜ(−γ + ϵ′),ℜ(−γ − γ′ − ϵ + η)},
ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt| < 1, then(

Dγ,γ′,ϵ,ϵ′,η
0+

[
tϕ−1

2F1(ϱ1, ϱ2; ϱ3;αt)
])

(x)

= xγ+γ′−η+ϕ−1 Γ(ϕ)Γ(−ϵ+ γ + ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)
2F1(ϱ1, ϱ2; ϱ3;αx)

∗ 4F3

 ϕ −ϵ+ γ + ϕ γ + γ′ + ϵ′ − η + ϕ 1

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ
;αx

 . (34)

Corollary 3.2. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(ξ) > max{ℜ(−ϵ′),ℜ(γ′ + ϵ− η),ℜ(γ+ γ′ − η)+
[ℜ(η)] + 1}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt | < 1. Then(

Dγ,γ′,ϵ,ϵ′,η
0−

[
t−ϕ

2F1

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

= xγ+γ′−η−ϕΓ(ϵ
′ + ϕ)Γ(−γ − γ′ + η + ϕ)Γ(−γ′ − ϵ+ η + ϕ)

Γ(ϕ)Γ(−γ′ − ϵ′ + ϕ)Γ(−γ − γ′ − ϵ+ η + ϕ)
2F1

(
ϱ1, ϱ2; ϱ3;

α

x

)
∗ 4F3

ϵ′ + ϕ −γ − γ′ + η + ϕ −γ′ − ϵ+ η + ϕ 1

ϕ −γ′ − ϵ′ + ϕ −γ − γ′ − ϵ+ η + ϕ
;
α

x

 . (35)
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3.2. For the Generalized Confluent Hypergeometric Function.

Theorem 3.3. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C,ℜ(ξ) > max{0,ℜ(−γ + ϵ′),ℜ(−γ − γ′ − ϵ + η)},
ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt| < 1, then(

Dγ,γ′,ϵ,ϵ′,η
0+

[
tϕ−1ΨF1

p1,p2(ϱ2; ϱ3;αt)
])

(x)

= xγ+γ′−η+ϕ−1 Γ(ϕ)Γ(−ϵ+ γ + ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)
ΨF1

p1,p2(ϱ2; ϱ3;αx)

∗ 4F3

 ϕ −ϵ+ γ + ϕ γ + γ′ + ϵ′ − η + ϕ 1

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ
;αx

 . (36)

Proof. Consider

LHS =
(
Dγ,γ′,ϵ,ϵ′,η

0+

[
tϕ−1ΨF1

p1,p2(ϱ2; ϱ3;αt)
])

(x)

=

(
Dγ,γ′,ϵ,ϵ′,η

0+

[
tϕ−1

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(αt)n

n!

])
(x)

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Dγ,γ′,ϵ,ϵ′,η

0+
tϕ+n−1

]
(x). (37)

Using Lemma 3.1 in the above equation (37), we get

LHS =

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(ϕ+ n)Γ(−ϵ+ γ + ϕ+ n)

Γ(−ϵ+ ϕ+ n)Γ(γ + γ′ − η + ϕ+ n)

× Γ(γ + γ′ + ϵ′ − η + ϕ+ n)

Γ(γ + ϵ′ − η + ϕ+ n)
xγ+γ′−η+n−1

=
Γ(ϕ)Γ(−ϵ+ γ + ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× xγ+γ′−η+ϕ+n−1 (ϕ)n(−ϵ+ γ + ϕ)n(γ + γ′ + ϵ′ − η + ϕ)n
(ϵ+ ϕ)n(γ + γ′ − η + ϕ)n(γ + ϵ′ − η + ϕ)n

. (38)

Using Hadamard Product in (38), we get

LHS =
Γ(ϕ)Γ(−ϵ+ γ + ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)
xγ+γ′−η+ϕ−1

×
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!
(αx)n

(ϕ)n(−ϵ+ γ + ϕ)n(γ + γ′ + ϵ′ − η + ϕ)n
(ϵ+ ϕ)n(γ + γ′ − η + ϕ)n(γ + ϵ′ − η + ϕ)n

(1)n
n!

.

= xγ+γ′−η+ϕ−1 Γ(ϕ)Γ(−ϵ+ γ + ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)
ΨF1

p1,p2(ω1, ω1;ω3;αx)

∗ 4F3

 ϕ −ϵ+ γ + ϕ γ + γ′ + ϵ′ − η + ϕ 1

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ
;αx

 .

Hence, the desired result (28). □
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Theorem 3.4. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C such that ℜ(ξ) > max{ℜ(−ϵ′),ℜ(γ′ + ϵ− η),ℜ(γ +
γ′ − η) + [ℜ(η)] + 1}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt | < 1. Then(

Dγ,γ′,ϵ,ϵ′,η
0−

[
t−ϕΨF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

= xγ+γ′−η−ϕΓ(ϵ
′ + ϕ)Γ(−γ − γ′ + η + ϕ)Γ(−γ′ − ϵ+ η + ϕ)

Γ(ϕ)Γ(−γ′ − ϵ′ + ϕ)Γ(−γ − γ′ − ϵ+ η + ϕ)
ΨF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

x

)
∗ 4F3

ϵ′ + ϕ −γ − γ′ + η + ϕ −γ′ − ϵ+ η + ϕ 1

ϕ −γ′ − ϵ′ + ϕ −γ − γ′ − ϵ+ η + ϕ
;
α

x

 . (39)

Proof. Consider

LHS =
(
Dγ,γ′,ϵ,ϵ′,η

0−

[
t−ϕΨF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

=

(
Dγ,γ′,ϵ,ϵ′,η

0+

[
t−ϕ

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

αn

tnn!

])
(x).

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Dγ,γ′,ϵ,ϵ′,η

0+
t−ϕ−n

]
(x). (40)

Using Lemma 3.2 in the above equation (40), we get

LHS =
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(ϵ′ + ϕ+ n)Γ(−γ − γ′ + η + ϕ+ n)

Γ(ϕ+ n)Γ(−γ′ − ϵ′ + ϕ+ n)

× Γ(−γ′ − ϵ+ η + ϕ+ n)

Γ(−γ − γ′ − ϵ+ η + ϕ+ n)
xγ+γ′−η−n−ϕ

=
Γ(ϵ′ + ϕ)Γ(−γ − γ′ + η + ϕ)Γ(−γ′ − ϵ+ η + ϕ)

Γ(ϕ)Γ(−γ′ − ϵ′ + ϕ)Γ(−γ − γ′ − ϵ+ η + ϕ)

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× xγ+γ′−η+ϕ−n (ϵ
′ + ϕ)n(−γ − γ′ + η + ϕ)n(−γ′ − ϵ+ η + ϕ)n
(ϕ)n(−γ′ − ϵ′ + ϕ)n(−γ − γ′ − ϵ+ η + ϕ)n

. (41)

Using Hadamard Product in (41), we get

LHS =
Γ(ϵ′ + ϕ)Γ(−γ − γ′ + η + ϕ)Γ(−γ′ − ϵ+ η + ϕ)

Γ(ϕ)Γ(−γ′ − ϵ′ + ϕ)Γ(−γ − γ′ − ϵ+ η + ϕ)
xγ+γ′−η+ϕ

×
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!

(α
x

)n
× (ϵ′ + ϕ)n(−γ − γ′ + η + ϕ)n(−γ′ − ϵ+ η + ϕ)n

(ϕ)n(−γ′ − ϵ′ + ϕ)n(−γ − γ′ − ϵ+ η + ϕ)n

(1)n
n!

.

= xγ+γ′−η−ϕΓ(ϵ
′ + ϕ)Γ(−γ − γ′ + η + ϕ)Γ(−γ′ − ϵ+ η + ϕ)

Γ(ϕ)Γ(−γ′ − ϵ′ + ϕ)Γ(−γ − γ′ − ϵ+ η + ϕ)
ΨF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

x

)
∗ 4F3

ϵ′ + ϕ −γ − γ′ + η + ϕ −γ′ − ϵ+ η + ϕ 1

ϕ −γ′ − ϵ′ + ϕ −γ − γ′ − ϵ+ η + ϕ
;
α

x

 .

Hence, the desired result (31). □
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Special Cases
When p2 = 0 and, if p1 = 1, r = 0, a1, b

′
1, d = 1, theorems 3.3 and 3.4 give the results for

the confluent hypergeometric function.

Corollary 3.3. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(ξ) > max{0,ℜ(−γ + ϵ′),ℜ(−γ − γ′ − ϵ + η)},
ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt| < 1, then(

Dγ,γ′,ϵ,ϵ′,η
0+

[
tϕ−1

1Ψ1(ϱ2; ϱ3;αt)
])

(x)

= xγ+γ′−η+ϕ−1 Γ(ϕ)Γ(−ϵ+ γ + ϕ)Γ(γ + γ′ + ϵ′ − η + ϕ)

Γ(−ϵ+ ϕ)Γ(γ + γ′ − η + ϕ)Γ(γ + ϵ′ − η + ϕ)
1Ψ1(ϱ2; ϱ3;αx)

∗ 4F3

 ϕ −ϵ+ γ + ϕ γ + γ′ + ϵ′ − η + ϕ 1

−ϵ+ ϕ γ + γ′ − η + ϕ γ + ϵ′ − η + ϕ
;αx

 . (42)

Corollary 3.4. Let γ, γ′, ϵ, ϵ′, η, ξ ∈ C, ℜ(ξ) > max{ℜ(−ϵ′),ℜ(γ′ + ϵ− η),ℜ(γ+ γ′ − η)+
[ℜ(η)] + 1}, ℜ(ϱ3) > ℜ(ϱ2) > 0,ℜ(p1),ℜ(p2) > 0, |αt | < 1. Then(

Dγ,γ′,ϵ,ϵ′,η
0−

[
t−ϕ

1Ψ1

(
ϱ2; ϱ3;

α

t

)])
(x)

= xγ+γ′−η−ϕΓ(ϵ
′ + ϕ)Γ(−γ − γ′ + η + ϕ)Γ(−γ′ − ϵ+ η + ϕ)

Γ(ϕ)Γ(−γ′ − ϵ′ + ϕ)Γ(−γ − γ′ − ϵ+ η + ϕ)
1Ψ1

(
ϱ2; ϱ3;

α

x

)
∗ 4F3

ϵ′ + ϕ −γ − γ′ + η + ϕ −γ′ − ϵ+ η + ϕ 1

ϕ −γ′ − ϵ′ + ϕ −γ − γ′ − ϵ+ η + ϕ
;
α

x

 . (43)

4. Image formula using Saigo fractional integral operator

Definition 4.1. The Saigo fractional integral operators are defined as [16, 17]

(
Iγ,ϵ,η
0− f

)
(y) =

1

Γ(γ)

∫ ∞

y
(t− y)γ−1t−γ−ϵ

2F1

(
γ + ϵ,−η; γ; 1− x

t

)
f(t)dt. (44)

and (
Iγ,ϵ,η
0+

f
)
(y) =

y−γ−ϵ

Γ(γ)

∫ y

0
(y − t)γ−1

2F1

(
γ + ϵ,−η; γ; 1− t

x

)
f(t)dt. (45)

where y > 0, γ, ϵ, η ∈ C,ℜ(γ) > 0 and 2F1(.) is the Gauss hypergeometric series.

We will use the following Lemmas [17] in our result:

Lemma 4.1. Let γ, ϵ, η ∈ C, ℜ(γ) > 0,ℜ(ξ) > max{0,ℜ(ϵ− η)}, then(
Iγ,ϵ,η
0+

tξ−1
)
(y) =

Γ(ξ)Γ(ξ + η − ϵ)

Γ(ξ − ϵ)Γ(ξ + γ + η)
yξ−ϵ−1. (46)

Lemma 4.2. Let γ, ϵ, η ∈ C, ℜ(γ) > 0,ℜ(ξ) < 1 + min[ℜ(ϵ),ℜ(η)], then(
Iγ,ϵ,η
0− tξ−1

)
(y) =

Γ(ϵ− ξ + 1)Γ(η − ξ + 1)

Γ(1− ξ)Γ(γ + ϵ+ η − ξ + 1)
yξ−ϵ−1. (47)
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4.1. For the Generalized Hypergeometric Function.

Theorem 4.1. Let γ, ϵ, η ∈ C and ℜ(γ) > 0,ℜ(ξ) > max{0,ℜ(ϵ − η)}, ℜ(ϱ3) > ℜ(ϱ2) >
0,ℜ(p1),ℜ(p2) > 0, |αt| < 1. Then(
Iγ,ϵ,η
0+

[
tϕ−1FF1

p1,p2(ϱ1, ϱ2; ϱ3;αt)
])

(x)

= xϕ−ϵ−1 Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)
FF1
p1,p2(ϱ1, ϱ2; ϱ3;αx) ∗ 3F2

 ϕ ϕ+ η − ϵ 1

ϕ− ϵ ϕ+ γ + η
;αx

 .

(48)

Proof. Consider

LHS =
(
Iγ,ϵ,η
0+

[
tϕ−1FF1

p1,p2(ϱ1, ϱ2; ϱ3;αt)
])

(x)

=

(
Iγ,ϵ,η
0+

[
tϕ−1

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(αt)n

n!

])
(x).

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Iγ,ϵ,η
0+

tϕ+n−1
]
(x). (49)

Using Lemma 4.1 in the above equation (49), we get

LHS =

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(ϕ+ n)Γ(ϕ+ n+ η − ϵ)

Γ(ϕ+ n− ϵ)Γ(ϕ+ n+ γ + η)
xϕ+n−ϵ−1

=
Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× xϕ+n−ϵ−1 (ϕ)n(ϕ+ η − ϵ)n
(ϕ− ϵ)n(ϕ+ γ + η)n

. (50)

Using Hadamard Product in (50), we get

LHS

=
Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)
xϕ−ϵ−1

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!
(αx)n

× (ϕ)n(ϕ+ η − ϵ)n
(ϕ− ϵ)n(ϕ+ γ + η)n

(1)n
n!

= xϕ−ϵ−1 Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)
FF1
p1,p2(ϱ1, ϱ2; ϱ3;αx)

∗ 3F2

 ϕ ϕ+ η − ϵ 1

ϕ− ϵ ϕ+ γ + η
;αx

 .

Hence, the desired result (48). □
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Theorem 4.2. Let γ, ϵ, η ∈ C and ℜ(γ) > 0,ℜ(ξ) < 1+min[ℜ(ϵ),ℜ(η)], ℜ(ϱ3) > ℜ(ϱ2) >
0,ℜ(p1),ℜ(p2) > 0, |αt | < 1. Then(

Iγ,ϵ,η
0−

[
tϕ−1FF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

= xϕ−ϵ−1 Γ(ϵ− ϕ+ 1)Γ(η − ϕ+ 1)

Γ(1− ϕ)Γ(γ + ϵ+ η − ϕ+ 1)

FF1
p1,p2

(
ϱ1, ϱ2; ϱ3;

α

x

)
∗ 3F2

ϵ− ϕ+ 1 η − ϕ+ 1 1

1− ϕ γ + ϵ+ η − ϕ+ 1
;
α

x

 . (51)

Proof. Consider

LHS =
(
Iγ,ϵ,η
0−

[
tϕ−1FF1

p1,p2

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

=

(
Iγ,ϵ,η
0−

[
tϕ−1

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

αn

tnn!

])
(x)

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Iγ,ϵ,η
0+

tϕ−n−1
]
(x). (52)

Using Lemma 4.2 in the above equation (52), we get

LHS =

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!
(53)

× Γ(ϵ− ϕ+ n+ 1)Γ(η − ϕ+ n+ 1)

Γ(1− ϕ+ n)Γ(γ + ϵ+ η − ϕ+ n+ 1)
xϕ−n−ϵ−1

=
Γ(ϵ− ϕ+ 1)Γ(η − ϕ+ 1)

Γ(1− ϕ)Γ(γ + ϵ+ η − ϕ+ n+ 1)

∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× xϕ−n−ϵ−1 (ϵ− ϕ+ 1)n(η − ϕ+ 1)n
(1− ϕ)n(γ + ϵ+ η − ϕ+ n+ 1)n

. (54)

Using Hadamard Product in (53), we get

LHS =
Γ(ϵ− ϕ+ 1)Γ(η − ϕ+ 1)

Γ(1− ϕ)Γ(γ + ϵ+ η − ϕ+ n+ 1)
xϕ−ϵ−1

×
∞∑
n=0

(ϱ1)n
BF1

p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!

(α
x

)n (ϵ− ϕ+ 1)n(η − ϕ+ 1)n
(1− ϕ)n(γ + ϵ+ η − ϕ+ n+ 1)n

(1)n
n!

= xϕ−ϵ−1 Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)
FF1
p1,p2

(
ϱ1, ϱ2; ϱ3;

α

x

)
∗ 3F2

ϵ− ϕ+ 1 η − ϕ+ 1 1

1− ϕ γ + ϵ+ η − ϕ+ n+ 1
;
α

x

 .

Hence, we get the desired result (51). □

Special Cases
When p2 = 0 and, if p1 = 1, r = 0, a1, b

′
1, d = 1, theorems 4.1 and 4.2 give the results for

the Gauss hypergeometric function.
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Corollary 4.1. Let γ, ϵ, η ∈ C and ℜ(γ) > 0,ℜ(ξ) > max{0,ℜ(ϵ− η)}, ℜ(ϱ3) > ℜ(ϱ2) >
0,ℜ(p1),ℜ(p2) > 0, |αt| < 1. Then(

Iγ,ϵ,η
0+

[
tϕ−1

2F1(ϱ1, ϱ2; ϱ3;αt)
])

(x)

= xϕ−ϵ−1 Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)
2F1(ϱ1, ϱ2; ϱ3;αx) ∗ 3F2

 ϕ ϕ+ η − ϵ 1

ϕ− ϵ ϕ+ γ + η
;αx

 .

(55)

Corollary 4.2. Let γ, ϵ, η ∈ C and ℜ(γ) > 0,ℜ(ξ) < 1+min[ℜ(ϵ),ℜ(η)], ℜ(ϱ3) > ℜ(ϱ2) >
0,ℜ(p1),ℜ(p2) > 0, |αt | < 1. Then(

Iγ,ϵ,η
0−

[
tϕ−1

2F1

(
ϱ1, ϱ2; ϱ3;

α

t

)])
(x)

= xϕ−ϵ−1 Γ(ϵ− ϕ+ 1)Γ(η − ϕ+ 1)

Γ(1− ϕ)Γ(γ + ϵ+ η − ϕ+ 1)

2F1

(
ϱ1, ϱ2; ϱ3;

α

x

)
∗ 3F2

ϵ− ϕ+ 1 η − ϕ+ 1 1

1− ϕ γ + ϵ+ η − ϕ+ 1
;
α

x

 . (56)

4.2. For the Generalized Confluent Hypergeometric Function.

Theorem 4.3. Let γ, ϵ, η ∈ C and ℜ(γ) > 0,ℜ(ξ) > max{0,ℜ(ϵ − η)}, ℜ(ϱ3) > ℜ(ϱ2) >
0,ℜ(p1),ℜ(p2) > 0, |αt| < 1. Then(

Iγ,ϵ,η
0+

[
tϕ−1ΨF1

p1,p2(ϱ2; ϱ3;αt)
])

(x)

= xϕ−ϵ−1 Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)
ΨF1

p1,p2(ϱ2; ϱ3;αx) ∗ 3F2

 ϕ ϕ+ η − ϵ 1

ϕ− ϵ ϕ+ γ + η
;αx

 .

(57)

Proof. Consider

LHS =
(
Iγ,ϵ,η
0+

[
tϕ−1ΨF1

p1,p2(ϱ2; ϱ3;αt)
])

(x)

=

(
Iγ,ϵ,η
0+

[
tϕ−1

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(αt)n

n!

])
(x).

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Iγ,ϵ,η
0+

tϕ+n−1
]
(x). (58)

Using Lemma 4.1 in the above equation (58), we get

LHS =
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(ϕ+ n)Γ(ϕ+ n+ η − ϵ)

Γ(ϕ+ n− ϵ)Γ(ϕ+ n+ γ + η)
xϕ+n−ϵ−1

=
Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× xϕ+n−ϵ−1 (ϕ)n(ϕ+ η − ϵ)n
(ϕ− ϵ)n(ϕ+ γ + η)n

. (59)
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Using Hadamard Product in (59), we get

LHS

=
Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)
xϕ−ϵ−1

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!
(αx)n

(ϕ)n(ϕ+ η − ϵ)n
(ϕ− ϵ)n(ϕ+ γ + η)n

(1)n
n!

= xϕ−ϵ−1 Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)
ΨF1

p1,p2(ϱ2; ϱ3;αx) ∗ 3F2

 ϕ ϕ+ η − ϵ 1

ϕ− ϵ ϕ+ γ + η
;αx

 .

Hence, the desired result (57). □

Theorem 4.4. Let γ, ϵ, η ∈ C and ℜ(γ) > 0,ℜ(ξ) < 1+min[ℜ(ϵ),ℜ(η)], ℜ(ϱ3) > ℜ(ϱ2) >
0,ℜ(p1),ℜ(p2) > 0, |αt | < 1. Then

(
Iγ,ϵ,η
0−

[
tϕ−1ΨF1

p1,p2

(
ϱ2; ϱ3;

α

t

)])
(x)

= xϕ−ϵ−1 Γ(ϵ− ϕ+ 1)Γ(η − ϕ+ 1)

Γ(1− ϕ)Γ(γ + ϵ+ η − ϕ+ 1)

ΨF1
p1,p2

(
ϱ2; ϱ3;

α

x

)
∗ 3F2

ϵ− ϕ+ 1 η − ϕ+ 1 1

1− ϕ γ + ϵ+ η − ϕ+ 1
;
α

x

 . (60)

Proof. Consider

LHS =
(
Iγ,ϵ,η
0−

[
tϕ−1ΨF1

p1,p2

(
ϱ2; ϱ3;

α

t

)])
(x)

=

(
Iγ,ϵ,η
0−

[
tϕ−1

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

αn

tnn!

])
(x)

Switching the order of integral and sum based on the valid conditions mentioned, we get

LHS =
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

[
Iγ,ϵ,η
0+

tϕ−n−1
]
(x). (61)

Using Lemma 4.2 in the above equation (61), we get

LHS =
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

Γ(ϵ− ϕ+ n+ 1)Γ(η − ϕ+ n+ 1)

Γ(1− ϕ+ n)Γ(γ + ϵ+ η − ϕ+ n+ 1)
xϕ−n−ϵ−1

=
Γ(ϵ− ϕ+ 1)Γ(η − ϕ+ 1)

Γ(1− ϕ)Γ(γ + ϵ+ η − ϕ+ n+ 1)

∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)

(α)n

n!

× xϕ−n−ϵ−1 (ϵ− ϕ+ 1)n(η − ϕ+ 1)n
(1− ϕ)n(γ + ϵ+ η − ϕ+ n+ 1)n

. (62)
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Using Hadamard Product in (62), we get

LHS =
Γ(ϵ− ϕ+ 1)Γ(η − ϕ+ 1)

Γ(1− ϕ)Γ(γ + ϵ+ η − ϕ+ n+ 1)
xϕ−ϵ−1

×
∞∑
n=0

BF1
p1,p2(ϱ2 + n, ϱ3 − ϱ2)

B(ϱ2, ϱ3 − ϱ2)n!

(α
x

)n (ϵ− ϕ+ 1)n(η − ϕ+ 1)n
(1− ϕ)n(γ + ϵ+ η − ϕ+ n+ 1)n

(1)n
n!

= xϕ−ϵ−1 Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)
ΨF1

p1,p2

(
ϱ2; ϱ3;

α

x

)
∗ 3F2

ϵ− ϕ+ 1 η − ϕ+ 1 1

1− ϕ γ + ϵ+ η − ϕ+ n+ 1
;
α

x

 .

Hence, the desired result (60). □

Special Cases
When p2 = 0 and, if p1 = 1, r = 0, a1, b

′
1, d = 1, theorems 4.3 and 4.4 give the results for

the confluent hypergeometric function.

Corollary 4.3. Let γ, ϵ, η ∈ C, ℜ(γ) > 0,ℜ(ξ) > max{0,ℜ(ϵ − η)}, ℜ(ϱ3) > ℜ(ϱ2) >
0,ℜ(p1),ℜ(p2) > 0, |αt| < 1. Then(

Iγ,ϵ,η
0+

[
tϕ−1

1Ψ1(ϱ2; ϱ3;αt)
])

(x)

= xϕ−ϵ−1 Γ(ϕ)Γ(ϕ+ η − ϵ)

Γ(ϕ− ϵ)Γ(ϕ+ γ + η)
1Ψ1(ϱ2; ϱ3;αx) ∗ 3F2

 ϕ ϕ+ η − ϵ 1

ϕ− ϵ ϕ+ γ + η
;αx

 .

(63)

Corollary 4.4. Let γ, ϵ, η ∈ C, ℜ(γ) > 0,ℜ(ξ) < 1 + min[ℜ(ϵ),ℜ(η)], ℜ(ϱ3) > ℜ(ϱ2) >
0,ℜ(p1),ℜ(p2) > 0, |αt | < 1. Then(

Iγ,ϵ,η
0−

[
tϕ−1

1Ψ1

(
ϱ2; ϱ3;

α

t

)])
(x)

= xϕ−ϵ−1 Γ(ϵ− ϕ+ 1)Γ(η − ϕ+ 1)

Γ(1− ϕ)Γ(γ + ϵ+ η − ϕ+ 1)

1Ψ1

(
ϱ2; ϱ3;

α

x

)
∗ 3F2

ϵ− ϕ+ 1 η − ϕ+ 1 1

1− ϕ γ + ϵ+ η − ϕ+ 1
;
α

x

 . (64)

5. Comparative Study and Conclusion

The use of fractional calculus operators such as Appell function kernels, Saigo operators
on extended and confluent hypergeometric functions is a big step forward in mathematical
research. Unlike earlier studies, which have mainly focused on particular operators or
specific functions, this research incorporates numerous operators to build a comprehensive
framework. This integration enables a more versatile and resilient technique to solving
fractional differential equations, which has not been thoroughly investigated in the existing
literature.

One of the most important contributions of this study is its capacity to generalize and
unify distinct mathematical notions. By applying these various fractional operators to hy-
pergeometric functions, the study presents a cohesive theoretical framework that bridges
the gap between distinct techniques in fractional calculus. This unification simplifies the
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theoretical foundations while simultaneously increasing the applicability of these mathe-
matical tools to a broader range of problems and disciplines.

This study, uses the generalized properties of hypergeometric functions to provide more
efficient algorithms and analytical tools. These innovations greatly lower the computing
burden and improve solution accuracy, making them more suitable for real-world applica-
tions.

In this paper, we have considered various fractional operators to investigate the im-
age formulas corresponding to the extended hypergeometric and confluent hypergeometric
function involving Appell series and Lauricella function. The different fractional opera-
tors used here include fractional integral operator involving Appell series F3(.) and Saigo
operator. These fractional operators have wide range of applications in solving kinetic
equations, fractional diffusion, fractional reaction diffusion equations and many more. The
results obtained for extended hypergeometric and confluent hypergeometric function are
reducible to Gauss hypergeometric and confluent hypergeometric function under certain
particular conditions.

6. Applications and Future Scope

This research is new in addition to having a wide range of possible practical applications.
In physics, engineering, finance, biology, and other domains, the study opens up new pos-
sibilities for tackling challenging issues by applying fractional calculus to hypergeometric
functions. These sophisticated mathematical tools, for instance, enable improved mod-
eling of quantum mechanics, viscoelastic materials, and anomalous diffusion, providing
solutions which were previously unattainable.

We can use the above results to discuss the fractional diffusion equations, which will help
in enhancing the understanding of particle transport in heterogenous materials. We can
also apply these operators to the stress-strain relationship to solve the viscoelastic model,
improving simulations of material behavior under different loading conditions.These results
can be used to solve fractional Schrodinger equation to find the wave functions of particles
in complex potentials. This inturn is useful in quantum transport and nanoscale systems.
Furthermore, these can be used to design fractional filters to enhance signal processing
algorithms, improving the resolution of medical images and seismic signals, in fractional-
order controllers to improve the robustness and precision of robotic arms and automated
systems in manufacturing. Also, these can be used to model the spread of diseases or the
growth of populations with memory effects.

Finally, this work opens up new avenues for theoretical and practical mathematics re-
search. Future study will benefit greatly from the innovative combination of numerous
fractional operators with hypergeometric functions. It promotes the discovery of new hy-
pergeometric functions, the investigation of other fractional operators, and the use of these
tools to address novel issues in a range of scientific fields. This research’s unique and pro-
gressive nature is further demonstrated by its potential for expansion and discovery in the
future. Various other fractional operators such as Erdélyi-Kober, Caputo-type, Riemann
Liouville and Weyl can be used in future to obtain various other results corresponding
to the extended hypergeometric and confluent hypergeometric function involving Appell
series and Lauricella function.
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