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ON SOME FAMILIES OF LINEAR DIOPHANTINE GRAPHS

O. M. SALAMA *, M. A. SEOUD !, M. ANWAR !, A. ELSONBATY !, §

ABSTRACT. Linear Diophantine labeling of graphs is an extension of the prime labeling
of graphs. In this manuscript, we introduce some necessary conditions for determining
whether a given graph admits Linear Diophantine labeling or not, and if yes, we will find
such a Linear Diophantine labeling. We also study specific families of graphs, including
the Complete graphs K,; Wheel graphs W, and W, ,; Circulant graphs C,(j); Path
graphs P,(j); Cartesian product graphs C3 X Cp,; Normal Product graphs P, o Py;
Corona graphs G ® H; Double Fan graphs g, = P, + Ka2; Power graphs P? and P2,
to ascertain their Linear Diophantine nature. We refer to a Linear Diophantine Graph
as an LDG.

Keywords: Graph labeling, Prime labeling, Linear Diophantine labeling, Families of
Linear Diophantine graphs.

AMS Subject Classification: 05C78

1. INTRODUCTION

In this work, we deal with finite, simple and undirected graph G = (V, E), where
V = V(G) denotes the vertex set and £ = E(G) denotes the edge set. |V| = n vertices
and |E| = m edges. The term |V] is called the order of the graph G, while |E| is called the
size of the graph G. A set of vertices S C V(@) is said to be independent if no two vertices
u and v in S are adjacent in G. The maximum number of vertices of an independent set in
G is called the vertex independence number of G or simply independence number, usually
denoted by «(G) [1, 6, 9, 11]. The Cartesian product G; x G2 of Gy with n vertices and
G9 with m vertices is the graph with vertex set V(G1) x V(G2) and edge set

{(u1,v1)(u2,v2) : (ug =uz and vivy € E(Gz)) or (vi =wv2 and wjuz € E(G1))},

this means that we have n copies of G2 and m copies of G; [8, 13]. The corona graph
G1 ® Gy of graphs G; and G2 obtained by taking one copy of G1(which has ny vertices)
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and n; copies of Go(which has no vertices), and then joining the i vertex of Gy # 0 to
every vertex in the i’ copy of G, G1 ® G5 has ny.(ng + 1) [8, 13].

Definition 1.1. The normal product G1 o Gy of two graphs G1 and Go is the graph with
vertez-set V(G o Go) = V(G1) x V(G2), where

V(Gl) - {ulyuly cee ,Un}, V(GQ) - {U17U27 cee 7Um}a

1) x1 = z2 and y1 is adjacent to ya in G
2) y1 = y2 and 1 is adjacent to xo in Gy

The k" power of a graph G, denoted as G*, is a graph with the same vertex set as G,
where two vertices are adjacent if their distance in G is at most k [1]. Powers of graphs are
referred to using terminology similar to that of exponentiation of numbers : G? is called
the square of G, G? is called the cube of G, etc. The k' power of a graph G contains
all the original edges of this graph G [1]. The Diameter of a graph G is the maximum
distance between pairs of vertices in this graph G [1, 2, 11, 22]. A circulant graph C,,(j)
of order n, for a fixed j is a super graph of the cycle graph C),, defined as follows:

V(Cn(])) = V(Cn) = {1)171)27 sy Un}7
and edge set

E(Cn(j)) = E(Crn) U{viVitjimodn) 1 € {1,2,3,...,n}},j < 5

[10]. A graph P,(j) of order n, for a fixed j is a super graph of the path graph P,,
defined as follows:

V(P (j) = V(Pn) = {v1,02,...,vn},
and edge set
E(Pn(.])) = E(Pn) U {Uivz'+j(modn) S {17 2,3,..., n}}a J<

[10]. The wheel graph W,,, denoted as C,, + K1 has n + 1 vertices [5, §].

|3

Definition 1.2. [5, 8, 23]. The double wheel graph is a graph consisting of two cycles of
vertices connected to a common center (hub). For everyn > 4,|V(W, )| =2n+1 and

n if n even
a(Wn,n) = f .
n—1 ifn odd
A triangular snake T'S/, is obtained from a path P, = {u1,u2,us,...,u,} by joining u;

and u;y; to a new vertex v;, where 1 <i < n — 1, and joining v; to v;4+1, 1 <1 < n — 2,
TS/ has 2n — 1 vertices [6].

The terminology and notations in this manuscript follow from Harary [11] and Allan
Bickel [1]. Graph labeling involves assigning real values (usually integers) to vertices or
edges or both while satisfying certain conditions. The literature in this field dates back to
the mid-1960s with the seminal paper by Rosa [14] includes thousands of papers covering
hundreds of methods of labelings.

Definition 1.3. [21] Let G = (V, E) be a simple graph of order n. The graph G is called a
prime graph if there exists a bijective map f : V — {1,2,...,n} such that (f(u), f(v)) =1
for alluwv € E,| i.e., f(u) and f(v) are relatively prime, this bijective map f is referred to
as a prime labeling of G.
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The concept of prime labeling was introduced by Roger Entringer and discussed in a
paper by Tout [21]. Vertex prime labeling was also discussed in a paper by Deretsky [4].
Seoud and Youssef discussed necessary and sufficient conditions for prime labeling [19].
Many researchers have studied prime graphs and made significant contributions to the
field. In 1994, Fu and Huang proved that the path P, on n vertices is a prime graph [7].
In 1991, Deretsky et al. proved that the cycle C), on n vertices is a prime graph [4]. In
1998, S. Lee et al. showed that the Wheel W), is a prime graph if and only if n is even
[12]. Around 1980 Roger Entringer conjectured that all trees have prime labeling, but this
conjecture remains unsettled to this day.

Definition 1.4. [20] Let G = (V, E) be a simple graph of order n. The graph G is called
Linear Diophantine (LD), if there exists a bijective map f:V — {1,2,...,n} such that
(f(u), f(v)) | n for all wv € E, where (f(u), f(v)) is the greatest common divisor of f(u)
and f(v), this bijective map f is referred to as a Linear Diophantine labeling of G.

The notion of LD labeling is clearly an extension of the concept of prime labeling. The
complete graph K, is LD but not prime and K3 is not LD.
Lemma 1.1. [8] If G and H are two graphs of n and m vertices respectively, then

a(Ge H) =na(H)

Lemma 1.2. [6] For every n > 2, the order of the maximum independent set for the
normal product graph P, o P, is [%12 |V (Pyo Py)| = n?.

The independence numbers of circulant graphs satisfy the following relations.
Lemma 1.3. [6, 10] Let C), be the cycle graph on n vertices, Cy,(j) be the circulant graph

with one jump j < 5, then,

(1) VYn > 3,a(C

- |3).
(2) V even numberj <3,

a(Cr(f)) <

(3) ¥V odd number j < §,a(Cpn(j)) = {

,_
N3
[

, ifn is even
2] - L%J , if n is odd

The Gauss’s Pi function 7(x) is defined as the number of primes not exceeding a non-
negative real number x [3, 15]. In modular arithmetic, for integers a,b, and m where
m > 0, we say that a is congruent to b modulo m if and only if m divides a — b, denoted as
a = b (mod m) [3, 15]. The greatest common divisor of two integers a and b, denoted as
(a,b), is the largest positive integer that divides both a and b [3, 15]. If (a,b) = 1 we say

that a and b are relatively prime. (See [3]). In this paper, we follow the basic definitions
and notations of number theory as presented in [3] and [15].

Theorem 1.1. (Ramanugjan’s theorem) [16, 18]
Let w(x) denote the number of primes not exceeding x.
Then w(x)—m(x/2) >1,2,3,4,5,..., ifx >2,11,17,29,41,... , respectively.

I3

Definition 1.5. [17, 20] For a given prime p, the p—adic valuation vy is a function from
N to N defined for all n € N, v,(n) := t, where pt|n and p'*' { n, t > 0. Moreover, a
critical prime power of n with respect to p denoted by cr(p,n) = pl’;’(") is the least prime

power of a prime p which does not divide n, where v,(n) := vp(n) + 1.

Theorem 1.2 (Necessary condition 1). [20] Suppose G is a simple graph with n vertices

and m edges. If a(G) < max

, where v} (n) = vp(n)+1, then G is not an LDG.
1<p<n/2 p

’ p(n)
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Theorem 1.3 (Necessary Condition 2). Let G be a graph with n vertices. When n is
an odd number, if o(G) < | 5], then G is not an LDG.

Proof. Since the number of vertices of even labels in {1,2,...,n} is | 5|, where n is odd,
and a(G) < [ 5], at least two vertices of even labels, say = and y, must be adjacent, hence

(f(x), f(y)) is even, which does not divide n, so the graph G is not LD. O

Theorem 1.4 (Necessary condition 3). Let G be a graph with n vertices and n is even.
Ifn=2 mod 6 orn=4 mod 6, a(G) < | 5], then G is not LDG.

Proof. 1t is a special case from Theorem 1.2, since 3 is the least prime power that does
not divide such n. g

The following three lemmas can be proven using mathematical induction.

Lemma 1.4. max{|a], Lagj ooy lan]} = |max{ay,az,...,an}], a; € QT for 1 <i<n.

Lemma 1.5. Letn € N, 2 € QF for1 <i <m, then max{;-, =,..., -} = m

Lemma 1.6. max { (")J = { max {’/n(")}J =) ,Vn>4, peP.
2<p<n/2 pp 2<p<n/2 | p? 2<r;1<1r7ll/2{pp }

2. MAIN RESULTS
Lemma 2.1. For a positive integer n, 4/n < n if and only if n > 16.

Proof. If 4\/n < n, then, by squaring, 16n < n?. Therefore, for n # 0,16 < n. Conversely,
if n > 16, then, by multiplying by n # 0,n% > 16n. Consequently n > 4,/n. O

Lemma 2.2. For every n > 6, except n € {9,10}, there exists at least one prime number
p, vV/n <p <% such that p{n.

Proof. We have two cases:
Case 1. Let n > 22, Ramanujan’s theorem (Theorem 1.1) ensures the existence of two
primes p; and po such that § < pi,p2 < §. Using (Lemma 2.1), we get \/n < p1,p2 < %,
we will show that p; 1 n or ps t n. Assume for contradiction that both p; and ps divide n,
i.e.,, p1 | n and po | n. Since ged(p1,p2) = 1 (because they are prime numbers), we have
p1 - p2 | n. Now, since p1,p2 > /n, we can conclude that p; - p2 > /n - y/n = n, implies
that p1 - p2 > n, i.e., p1 - p2 1 n, this contradicts that p; - po | n. Therefore, if p1, p2 > /n,
it follows that p1 ¥ n or pa t n.
Case 2. This lemma is also valid for n < 22, except n € {1,2,3,4,5,6,9,10} (This can be
easily verified by direct calculation).

O

Lemma 2.3. For n > 4 The vertex independence number of the cubic power of the Path
graph P2 which is denoted by a(P2) is equal to [%].

Proof. Using mathematical induction. O
Theorem 2.1. The complete graph K, is LD if and only if n € {1,2,3,4,6}.

Proof. Suppose, by contrapositive, that n ¢ {1,2,3,4,6}. Our goal is to demonstrate
that K, is not an LDG. According to Ramanujan’s Theorem 1.1, we are guaranteed the
existence of at least two prime numbers, denoted as p; and ps by utilizing the equation
m(x) —m(5) > 2 for x > 11. Furthermore, from lemma 2.2, since the primes p; and p;
satisfy p1,p2 > /n, it follows that p; f n or pa ¥ n. By selecting two primes within the
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range of n/4 and n/2, as per Ramanujan’s Theorem 1.1, we obtain further insight. Using
Lemma 2.1, we get \/n < %. Additionally, according to Ramanujan 1.1, if n > 22, then
m(n/2)—m(n/4) > 2, ensuring the existence of two primes p; and ps between n/4 and n/2,
with 2p1,2ps < n for all n > 22. This implies that p1,py > 7 for all n > 22. Consequently,
we have p; { n or p2 t n (Lemma 2.2). Let p; be a prime number such that p; { n and
T <p1 <5 <n, f(u) and f(v) be the labels of u and v, respectively in V' (K}), such that
f(u) = p1 < nand f(v) = 2p1 < n. Therefore, (f(u), f(v)) = (p1,2p1) = p1 1 n for all
n > 22. Hence, for all n > 22, we conclude that K, is not an LDG. Finally, it is easy to
show that K, is not an LDG for n =5 and 7 < n < 21.

Conversely, it is evident that the proof also works in the other direction. O

Theorem 2.2. The wheel Wy, is an LDG for alln > 1.

Proof. Let V(W,,) = {uo;u1,ug,...,uy}, where ug is the central vertex for W,,. There
exists a labeling function f: V(W,) — {1,2,3,...,n+ 1}, which satisfies the condition
in Definition 1.4, the labeling function can be defined as follows:

fup) =1, f(ur) =2, f(u2) =3, ..., f(un—1) =n, f(un) =n+ 1 (Figure 1).

FiGURE 1. An LD labeling for the wheel graph W, for all n > 1.

Since

2 if n is odd
1if n is even

(f(u1), flun)) = (2,0 +1) = {
which divides the order of W,,. The remaining labels are assigned as consecutive numbers
such that their greatest common divisor is equal to 1, hence, W,, is an LDG for all n >

1. O
Theorem 2.3. The double wheel Wy, , is an LDG if and only if n is even, n > 4.

Proof. Let V(W ) = {uo, w1, u, ..., up;v1,v2....,0,}, where ug is the central vertex for
Wyn. Case 1. Let n be odd. a(Wy, ) =n—1<n= L%J = VQL‘J Therefore, from

the necessary condition 2 (Theorem 1.3), the graph W, ,, is not LD.

Case 2. Let n be even and n > 4, then there exists a labeling function

[ V(Whn) — {1,2,3,...,|[V(Wp,)|}, which satisfies the condition in Definition 1.4,
the labeling function can be defined as follows:

f(UO) = 17f(u1) = 27f(u2) = 37"'7f(un71) = nvf(un) =n+1 f(vl) = n+27f(v2) =
n+3,..., f(on—1) = 2n, f(v,) = 2n + 1 (Figure 2).
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~ - 7
~_—— _ — - 4

FIGURE 2. An LD labeling for the double wheel graph W), ,, for n is even
and n > 4.

Since (f(u1), f(un)) = (2,n+1) =1||V(W, )| whenever n is even,

3ifn=4 mod®6

(f(v1), f(vn)) = (R +2,2n+1) = {1ifn7—é4 mod 6

In case of n Z4 mod 6 and n is even, then we have either, n =0 mod 6,i.e. n = 6k,

k € N,therefore, (2n + 1,n + 2) = (2(6k) + 1,6k + 2) = (12k + 1,6k + 2) = 1. Or,

n =2 mod 6, i.e., n =2+ 6k k' € N, therefore, (2n+1,n+2) = (5 + 12k',4 + 6k’) = 1.

In case of n =4 mod 6 and n is even, (2n+1,n+2) =3 | [V(W,, )| = 2n + 1, since

n=4 mod 6, ie n=446k" k" >0. Thus, [V(W,) =2n+1=2(4+6k")+1=8+
12k" +1 = 3(3+4k") = 3t, where t = 3+4k"” € N, therefore (2n+1,n+2) =3 | [V (Wyn)|.
The remaining labels are assigned as consecutive numbers such that their greatest common
divisor is equal to 1, hence, W), 5, is an LDG for all n is an even number, n > 4. U

Theorem 2.4. The circulant graph Cy(2) with jump = 2 and n > 3 is LD if and only if
n 18 even.
Proof. Suppose, by contrapositive, that n is odd. From lemma 1.3, Vn > 3, a(C,(2)) =
|5]. Additionally, LMJ = |§]. Therefore a(Cy(2)) < LMJ Hence, from
the necessary condition 2 (Theorem 1.3), C,,(2) is not an LDG.
Conversely, let n be an even number. We want to prove that C,(2) is an LDG. Let
V(Cn(2)) ={v1,v2,...,v,} and

E<Cn(2>) = E(Cn) U {vivi+2(modn) S {17 27 37 s ,TL}}
There exists a labeling function f: V(C,(2)) — {1,2,3,...,n}, which can be defined as

follows:
fo1) =1, f(vip1) = 2i + 1, f(ve) = 2i, for 1 < i < 252, f(v,) = n (Figure 3).
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Uy

L1

FIGURE 3. An LD labeling for the circulant graph C,(2) for n is even and
n > 3.

Since n is even, (f(v2), f(vn)) = (2,n) = 2 | n, (f(v2), f(veit2)) = (2i,2i +2) = 2 | n,
1<i<(n—2)/2, (f(vn—2), f(vn)) = (n—2,n) = 2 | n. The remaining labels are assigned
as consecutive numbers such that their greatest common divisor is equal to 1, hence Cy,(2)
is an LDG. O

Theorem 2.5. The cartesian product of the graph C3 x C,, is LD if and only if m is an
even number, m > 3.

Proof. Suppose, by contrapositive, let m be odd and m > 3. In fact |V (C5 x Cy,)| = 3m,
and m is odd. Therefore, a(C3 x Cy,) = m < [3] = LMJ, hence from the

necessary condition 2 (Theorem 1.3), the graph C5 x C,, is not LD for m > 3.
Conversely, let m be even, we want to prove that C3 x (), is an LDG.

Let V(C5 x Cp) = {0, U1, U2, . « ., Upp—15 00, V1, V2, « -+, Upp—1; W0, W1, W2, - . ., Wyy—1 }, there
exists a labeling function f : V(C5 x Cy,,) — {1,2,3,...,3m}, the labeling function can
be defined as follows: f(u;) = 3i + 1, f(v;) = 3i+ 2, f(w;)) =3i+3,for 0 <i<m—1
(Figure 4).

FIGURE 4. An LD labeling for the graph C5 x C),, m is even and m > 3.
Since (f(w;), f(wis1)) = (31 +3,3i +6) =3 | 3m,0<i <m—1,

1 if 7 even

(f(ui), f(w;)) = (3i +1,3i +3) = {2 if i odd.
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The remaining labels are assigned as consecutive numbers such that their greatest common
divisor is equal to 1, hence, C3 x ()}, is an LDG. ]

Theorem 2.6. If the normal product graph P, o P, is LD, then n € {1,2,3} or n = 6k
for k> 1.

Proof. Suppose, by contrapositive, n ¢ {1,2,3} and n # 6k for kK > 1. We have two cases:
Case 1. If n is odd and n # 1,3, i.e. n =2k' + 1, ¥ > 1. From lemma 1.2, a(P, o P,) =
[212,n =2K'4+1, k' > 1, 50, a(Poyry10Popr 1) = (K)>+2K +1, K > 1, |[V(P,0P,)| = n?,

[V (Popri1 0 Poprsr)| = 4(k/)2 A+ 1, K > 1, \“V(PQICH»lQOPQkUrl)‘J _ 2(]{’)2 Lok K > 1,

a(Pory1 0 Pograr) = ()2 + 2k +1 < 2(k")2 + 2k = ['V(P%’H;P%’H)'J . k' > 1, hence
from the necessary condition 2 (Theorem 1.3), the graph P, o P, is not LD in this case.
Case (2) : If n is even, n # 2 and n # 6k for any k ji.e. n %0 mod 6 , then we have two
subcases: Subcase (i) If n =2 mod 6 ,i.e. n =2+ 6.k" k" € N | it follows that :
a(Pyygrr © Poygrr) = [2+T6k”]2 =1+ 6k" +9(k")%, k" € N. In this case, from lemma

1.6, where |V (P, o P,)| = n?, we have that

\2 11\2
o [ SO | QB s
k”)

2<pe 2e0K2 | ptp(2HOK)? 3
e 2

since 3 is the least prime power that does not divide such n, [MJ = 12(k")*+8k" +1,

" _ 112 " "2 " _ |l e+ee? | _
k" > 1, therefore a(Poygrr © Poygrr) = (k") +6k" +1 < 12K +8k" +1 = | =

, { (2+6k")?
2<p< CFU) | rp(2+ok”)?
necessary conditions 1 and 3 (Theorem 1.2 and Theorem 1.4). Likewise subcase (ii) If
n = 4 mod 6, we similarly conclude from the necessary conditions 1 and 3 (Theorem
1.2 and Theorem 1.4) that P, o P, is not an LDG also in this case. We proved that for
n ¢ {1,2,3} and n # 6k, k > 1, then P, o P, is not an LDG. O

Remark 2.1. It is clear to see that the graph P, o P, is LD if n € {1,2,3} and n = 6k,
for k=1 and 2.

max J , hence, we have that P, o P, is not an LDG, based on the

Conjecture 2.7. The normal product graph Pgy o Py, for k > 3 is LD.

Theorem 2.8. If G and H are two graphs with n and m vertices respectively and o (H) <
% such that n > 3 is odd and m > 2 is even, then the corona G ® H is not an LDG.
Moreover, this upper bound % of a(H) is the best possible.
Proof. Since o (G® H) = na(H) (lemma 1.1), V(GO H) | =n(l4+m), o« (GO H) =
no (H) <n'g, ['V(C’;QHNJ — [n(w;rl)J =|2| + n’g, therefore a (GO H) <n < [2]+
_ | V(GoH)|
= 2

n'y J , from the necessary condition 2 (Theorem 1.3), G ® H is not an LDG.
Moreover, % is the best possible upper bound to guarantee that G ©® H is a non - LDG.
Since a (G ® H) = na(H) < |%]| + nZ, dividing both sides of the inequality by n > 3
gives o (H) < 1 |2] 4+ 2. Since 1 |2| < 1, we have a (H) < %. If a(H) = % + 1, then
we cannot judge the corona graph G ® H is not LD. However, there are cases where this
theorem does not apply. If m > 2 is even, a(H) = % + 1, and n > 3 is odd, then we
cannot apply this theorem (see Example 2.1).

Example 2.1. For instance, the graph TS5 ® S shown in Figure 5 is LD.
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FIGURE 5. An LD labeling for the graph T'S5 ® Sj.

We cannot guarantee the validity of the theorem in the cases: n and m are even, n and
m are odd, and n is even and m is odd. The following graphs in example 2.2 ensures the

last cases respectively.
Example 2.2. The following graphs Py © Py, P3 ® K3 and Py ® C3 respectively are LD
(Figure 6).

1 2 3 4 1 3 12 4 5
5 6 7 8 0 N1 12
5 10 7 2 7

FiGure 6. LD labeling graphs.

0

Corollary 2.1. There are several families of graphs with the conditions of theorem (2.8),
we conclude that they are not LD, such as the following below:
(TS, 0 K, 2)TS,0 Ky, (3)H:O K, (4H: © Cp,
B)TS, ® P, (6)TS,®Cp, (NH; © Ky (8)H) ® Py,
Where H}: is the flower graph.
Theorem 2.9. The double fan graph g, = p, + Kz is LD for all n > 3.

Proof. |V (gn)] = n+ 2. Let V(gn) = {vi,v2;u1,u2,...,un}. In fact, for all n > 3,

there exists a labeling function f: V (g,) — {1,2, ..., n+ 2} which we can defined it as
follows:
fv)=1, f(va)=n+2, f(u;))=1i+1, 1 <i<n (Figure 7).

vy

Y/
i, ‘ Uy

U3

FIGURE 7. An LD labeling for the double fan graph for all n > 3.

This labeling guarantees that each two adjacent labeled vertices in the graph g, have
greatest common divisor which divides the order of g,, hence, the graph g, is LD. O
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Theorem 2.10. The square of the path graph P2 is LD if and only if n € {1,3,5,7} or
n s even.

Proof. Suppose, by contrapositive, that n ¢ {1,3,5,7} and n is odd, we have three cases:
n=1mod6 or n=3 mod 6 or n=>5 mod 6.

Case 1: If n # 1, Tand n = 1 mod 6, i.e. n = 1+ 6k, where k > 2, we know that
o (P?) = [§] and |V (P7)[ = n, therefore, o (PP ) = [HP*] = 2k +1, [V (P )| =

2
1+ 6k for k > 2. Thus, « (P12+6k) =2k+1<3k= LGkQJFIJ = \‘|V(P12+6’“)’J , for k> 2,

hence, from the necessary condition 2 (Theorem 1.3), we conclude that the graph P12+6k
is not LD for k£ > 2.
Similarly, in case 2, when n = 3 mod 6, and n # 3, and in case 3, when n =5 mod 6
and n # 5, from the last three cases, we can show that the graph P2 is not LD.
Conversely, it is obvious that the graph P2 is LD for n € {1,3,5,7}, and also for n is
even, n > 2, as follows : let V (Pg) = {v1,v9,...,v,} . There exists a labeling function
f:v (qu) — {1,2,3,...,n}, which can be defined as follows: f(v;) =i, for 1 <i <n

(Figure 8).
k£ U2 U3 V4 Vs Ve Vn-2 Uy v,

FIGURE 8. An LD labeling of the graph P? for n is even, n > 2.

The labels (f(vi), f(viye)) = (i,i +2) = 2 | n for i even and equal to 1 | n otherwise.
Similarly, (f(vn—2),f(vn)) = (n —2,n) = 2 | n. The remaining labels are assigned as
consecutive numbers such that their greatest common divisor is equal to 1, hence, P? is
an LDG.

O
Corollary 2.2. The graph P? is labeled isomorphic to the path graph P, (2).

Figure 9 shows P? is labeled isomorphic to Ps (2).

1 6
2 5 1 2 3 4 5 6
3
4

FIGURE 9. An LD labeling for P and Ps(2).

Corollary 2.3. The graph C? is labeled isomorphic to the circulant graph Cy, (2).
It follows from Theorem 2.4 that the square graph C? is LD if and only if n is even.

Corollary 2.4. If the diameter in a graph G is k, then the k" power of the cycle graph
C, will be a complete graph K,, i.e., C’fi = K, is labeled isomorphic, for 1 < k < L%J,
hence, the graph CF is LD if and only if n € {1,2,3,4,6} and 1 < k < L%J

Proof. Consequently, since CF 2 K, it follows from theorem 2.1 that C¥ is an LDG if

and only if n € {1,2,3,4,6} and 1 <k < |%].
a
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Theorem 2.11. For n > 4, the cube of the path graph P3 is LD if and only if n €
{4,5,8,10,14} or n =0 (mod 6).

Proof. Suppose, by contrapositive, for n > 4, n ¢ {4,5,8,10,14} and n # 0 (mod 6), then
we have the following cases:
Case 1: If n > 5 is odd, then we have n = 1 (mod 6), i.e., n = 1 + 6k for £ > 1. From

lemma (2.3), a(P) = [4]=[5]=[4+ 3k] for b > 1. | DGR | — 2] = | 14505 ] = 3k

V(PP
2

for k > 1, therefore, a(P13+6k,) = H + %H < 3k = { for £ > 1, hence, from

the necessary condition 2 (Theorem 1.3), we have that the graph P2 in this case is not
LD. Similarly, the other cases, when n = 3 (mod 6) and n = 5 (mod 6).

Case 2: If niseven and n ¢ {4,8,10, 14} and n # 0 (mod 6), then we have: n = 2 (mod 6),
i.e., n=2+6.L for L > 3. From lemma 2.3 and lemma 1.6, «(P3) = [2] = {#W =

[% + %L} for L > 3, since 3 is the least prime power that does not divide such n, so

LD SPp \‘VZ‘(”')J = L%J = L#J = L% +2L| = 2L for L > 3, therefore, (P ) =
P

[A+3L] <2L = L% +2L) = [5] = maxicpen)n LﬂZ")J for L > 3, hence, from the

necessary conditions 1 and 3 (Theorem 1.2 and Theorem 1.4), we have that the graph P3
in this case is not LD. Similarly, in the case, when n = 4 (mod 6). From the last five cases
we proved the first direction of the theorem.

Conversely, it is obvious that P2 is LD for n € {4, 5,8, 10, 14}. Now, consider n = 0 mod 6,
let V (P2) = {v1,v2,...,v,} be the vertices of P35, where n = 6k for k > 1. There exists
a labeling function f: V (P3) — {1,2,3,...,n}, which can be defined as follows:

f(vi) =1, for 1 <1i <n (Figure 10).

FIGURE 10. An LD labeling for the graph P2, when n = 0 mod 6.

Since
1 ifi#0 mod 2

(f (i), f (vig2)) = (i,i +2) = {2 if i=0 mod 2

R A et

Which divides the order of P2, hence, the graph P23, n = 6.k for k > 1is LD. O
Remark 2.2. Forn = 1,2 and 3 (It is obvious that the graph P3 is LD).
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3. CONCLUSION

This manuscript examines various graph families, including complete graphs, wheel
graphs, circulant graphs, and cartesian product graphs, to determine their LD nature and
establishing necessary and sufficient conditions for LD labeling. We extend the concept
of prime labeling, concluding that all prime graphs are also LD. Furthermore, we proved
that complete graphs K, are LD for specific values of n, while wheel graphs W,, are LD
for all n > 1. Additionally, we identify conditions for more complex structures, such as
normal product graphs and cubes of path graphs, exhibit LD properties. For our future
research, we may focus on generalizing these conditions and identifying new LD families.

Acknowledgement. The authors would like to express their gratitude to the referees
for their insightful comments and valuable suggestions, which have greatly improved this
manuscript.

REFERENCES

Bickle, A., (2020), Fundamentals of Graph Theory, American Mathematical Society, Providence,
Rhode Island, USA, vol.43, pp. 336.

Bondy, J. A., Murty, U. S. R., (2008), Graph Theory, Graduate Texts in Mathematics, vol.244,
Springer, p.82, ISBN 9781846289699.

Burton, D. M., (2011), 7th ed, Elementary number theory, A business unit of The McGraw-Hill
Companies, Inc., 1221 Avenue of the Americas, New York.

Deretsky, T., Lee, S. M., Mitchem, J., (1991), On vertex prime labeling of graphs in graph theory,
Combinatorics and Applications vol. I. J., Alavi, Chartrand G., Ollerman O., Schwank A., 6th ed.,
International Conference Theory and Application of Graphs, Wiley, New York, pp. 359-369.
Elsonbaty, A., Daoud, S., (2017), Edge even graceful labeling of some path and cycle related graphs,
Ars Combinatorial.

El Harbi, E., (2018), Number Theoretic Functions and Graph Labeling, Published M.Sc. thesis.

Fu, H. L., Huang, K. C., (1994), On Prime Labeling, Discrete Mathematics, vol. 127, No. 1-3, PP.
181-186, doi:10.1016/0012-365X(92)00477-9.

Gallian, J. A., (2007), A dynamic survey of graph labeling, The Electronic Journal of Combinatorics.
Gross, J. L., Yellen, J., Zhang, P., 2"¢ edition, Handbook of Graph Theory, Version Date: 20130923,
International Standard Book Number-13:978-1-4398-8019-7.

Hoshino, R., (2007), Independence polynomials of circulant graph, Published Ph.D. thesis, Dalhousie
University, Halifax, Nova Scotia.

Harary, F., (1969), Graph Theory, Addison-Wesley Publishing Company, Reading, Massachusetts.
Lee, S. M., Wui, L., Yeh, J., (1988), On the Amalgamation of Prime Graphs, Bulletin of the Malaysian
Mathematical Sciences Society, Second Series, vol. 11, pp. 59-67.

Mahran, A. E. A., (2008), Some different treatments of graph Labeling, Published M.Sc. thesis, Ain
Shams University, Cairo.

Rosa, A., (1967), On certain valuations of the vertices of a graph, Theory of Graphs, Intl., Symp.,
Rome 1966, Gordon and Breach, Dunod, Paris, pp. 349-355.

Rosen, K. H., 5% edition, Elementary Number Theory and Its Applications, Addison-Wesley Pub-
lishing Company, Reading Massach.

Ramanujan, S., (1919), Proof of Bertrand’s postulate, Journal of the Indian Mathematical Society.
Robert, A. M., (2000), A Course in p-adic Analysis, Springer Science Business Media, LLC.
Sondow, J., (2009), Ramanujan primes and Bertrand’s postulate, The American Mathematical.
Seoud, M. A., Youssef, M. Z., (1999), On Prime Labeling of Graphs, Congressus Numerantium, vol.
141, pp. 203-215.

Seoud, M. A.,; Anwar, M., Nasr, A., Elsonbaty, A., (submitted for publication), Some Necessary and
Sufficient Conditions for Diophantine Graphs.

Tout, A., Dabboucy, A. N., Howalla, K., (1982), Prime Labeling of Graphs, National Academy Science
Letters, vol. 11, pp. 365-368.

Weisstein, Eric, W., (1990), Graph Power (https://mathworld.wolfram.com/GraphPower.html),
Skiena, P. 229.



248 TWMS J. APP. ENG. MATH. V.16, N.2, 2026

[23] Youssef, M. Z., (2000), On graceful harmonious and prime labeling of graphs, Published Ph.D. thesis,
Ain Shams University, Cairo.

Mohammed Abdel Azim Seoud is a professor of pure mathematics at the Faculty
of Science, Ain Shams University. He received his Ph.D. in Mathematics (Algebra)
from the University of Munich. He has been a professor of pure mathematics since
1993 at Ain Shams University. He has more than 80 published or accepted papers in
Canadian, English, Bulgarian, Pakistani, Indian, and Egyptian journals, mostly on
graph theory.

Ahmed Elsonbaty is an Associate Professor of Pure Mathematics at the Faculty
of Science, Ain Shams University. He received his Ph.D. in Pure Mathematics from
the University of Bath in 2004. His current research interests include number theory
and its applications in graph labeling and combinatorial problems.

Mohamed Anwar is an Assistant Professor in the Mathematics Department at the
Faculty of Science, Ain Shams University. He holds a Ph.D. in Pure Mathematics
from Roma Tre University in Italy and a master’s degree in Pure Mathematics from
the Faculty of Science, Ain Shams University.

Omar Mohamed Salama graduated from Ain Shams University. He is currently
pursuing his M.Sc. in the Department of Mathematics at the Faculty of Science, Ain
Shams University and his research interests are in graph labeling, number theory.
Presently, he is working as a teaching assistant in the Department of Mathematics at
the Faculty of Science, Ain Shams University.




