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FRACTIONAL-ORDER MODELING OF ZIKA VIRUS

TRANSMISSION: ANALYSIS AND NUMERICAL SIMULATIONS

K. SHAH1,∗, J. PARMAR1, J. PATEL2, H. C. PATEL3, §

Abstract. This study presents a novel mathematical framework for modeling Zika virus
transmission dynamics within human populations and between humans and mosquitoes,
utilizing a fractional-order Caputo derivative. The study establishes the system’s feasi-
bility region, determines equilibrium points, and analyzes their stability. The existence
and uniqueness of the solution are proven using fixed-point theory, and solutions are
approximated via the fractional natural decomposition method. A key novelty of this
study lies in the comparative analysis of fractional-order and integer-order models, high-
lighting how fractional derivatives provide greater modeling flexibility and better capture
memory effects in disease progression. The numerical simulations demonstrate the signif-
icant influence of fractional derivatives on system behavior, illustrating differences in the
rate of infection spread and disease persistence compared to integer-order models. This
fractional calculus approach offers valuable insights into the complex dynamics of Zika
virus transmission. Importantly, this study explores how fractional-order modeling can
enhance existing control strategies against Zika virus outbreaks, providing a more refined
framework for evaluating intervention measures and improving public health decision-
making.
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1. Introduction

Zika virus, a flavivirus primarily transmitted by Aedes mosquitoes, was first identified
in a rhesus macaque in Uganda’s Zika Forest in 1947 and subsequently in Aedes africanus
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mosquitoes in 1948 [1]. Early human cases were detected in Uganda and Tanzania in
1952. From the 1960s to the 1980s, Zika spread across equatorial Africa and Asia [1],
with sporadic human cases reported. The first large outbreak in humans occurred on
Yap Island in 2007 [2], marking a significant shift in the virus’s epidemiological pattern.
Subsequent outbreaks, including those in the Americas, highlighted the virus’s potential
for rapid global spread and its association with severe complications, particularly in preg-
nant women [3]. As of February 2022, the World Health Organization reported Zika virus
transmission in 89 countries and territories, emphasizing its global health significance. The
primary mode of Zika virus transmission is through the bite of an infected Aedes species
mosquito, primarily Aedes aegypti and Aedes albopictus [3]. These mosquitoes are also
known to transmit dengue, chikungunya, and other viruses. While less common, Zika
can also be transmitted through sexual contact, blood transfusions, and from a pregnant
woman to her fetus. Standing water in containers and vases provides suitable breeding
habitats for Aedes mosquitoes, the primary vectors of Zika virus [4]. Aedes aegypti, in
particular, prefers artificial containers for laying eggs [5]. These mosquitoes take approxi-
mately two to twelve days to develop from egg to maturity. Zika virus infection typically
presents with symptoms lasting around seven days, including fever, rash, and joint pain,
resembling other arboviral infections such as dengue. Studies indicate that individuals
recovering from Zika virus infection develop immunity and are unlikely to experience re-
infection. Given the complex dynamics of Zika virus transmission, mathematical models
have played a crucial role in understanding its spread and guiding public health interven-
tions. Traditional integer-order models have been widely used in epidemiology; however,
they often struggle to capture the memory effects and heterogeneity inherent in infectious
disease dynamics. Fractional calculus provides a more flexible and accurate framework by
incorporating memory-dependent processes and non-local effects, making it particularly
useful for modeling vector-borne diseases such as Zika.
Fractional-order models have gained increasing attention in epidemiological studies due
to their ability to describe complex biological interactions more accurately than clas-
sical integer-order models. Unlike traditional models, fractional calculus accounts for
long-range dependencies in transmission dynamics, allowing for a more realistic repre-
sentation of disease spread. Recent studies have successfully applied fractional-order
derivatives to model infectious diseases such as dengue fever, Zika, COVID-19, and plant
diseases [7–11, 20–23, 23–39]. These models provide improved predictions and offer new
insights into disease control strategies. Despite recent advances, challenges remain in de-
veloping robust epidemiological models that fully capture the multi-scale nature of Zika
virus transmission. Researchers continue to explore optimal intervention strategies using
fractional-order models, addressing factors such as vector control, human mobility, and
climate change. In this study, we employ a fractional-order mathematical model to ana-
lyze the transmission dynamics of Zika virus and evaluate potential control measures. By
leveraging the advantages of fractional calculus, we aim to enhance our understanding of
Zika virus spread and contribute to more effective public health interventions.

1.1. Model Formulation. In this mathematical model we divide the human population
(Nh) in two groups such as Susceptible humans (Sh) and Infected humans (Ih). So Nh =
Sh + Ih. Similarly we devide the Mosquitoes population (Nm) in two groups such as
Susceptible mosquito (Sm) and Infected mosquito (Im). So Nm = Sm + Im.
The mathematical model for zika virus, presented in [11] is as follows :
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Figure 1. Flow Chart for Zika Virus Transmission.

dSh

dt
= Λh − β1ShIh − β2ShIm − k1Sh

dIh
dt

= β1ShIh + β2ShIm − k1Ih

dSm

dt
= Λm − µSmIh − k2Sm

dIm
dt

= µSmIh − k2Im

(1)

List of parameter and variables used in the are :
Parameters Description Values

Λh recruitment rate of human population 1.2 day−1

Λm Recruitment rate of mosquito population 0.3 day−1

β1 Effective contact rate of human to human 0.125× 10−4 day−1

β2 Effective contact rate of mosquito to human 0.4× 10−4 day−1

µ Effective contact rate of human to mosquito 0.475× 10−5 day−1

k1 Natural death rate of human 0.004 day−1

k2 Natural death rate of mosquitoes 0.0014 day−1

The initial model lacks consideration for the internal memory effects inherent in the sys-
tem. To enhance its accuracy, we substitute the first-order time derivative with the Caputo
fractional derivative of order δ [18,19]. With this adjustment, the transmission model for
the Zika virus, applicable for t ≥ 0 and δ ∈ (0, 1), is formulated as follows:

Dδ
tSh(t) = Λh − β1ShIh − β2ShIm − k1Sh

Dδ
t Ih(t) = β1ShIh + β2ShIm − k1Ih

Dδ
tSm(t) = Λm − µSmIh − k2Sm

Dδ
t Im(t) = µSmIh − k2Im

(2)

where the initial conditions are Sh(0) = S0h, Ih(0) = I0h, Sm(0) = S0m, Im(0) = I0m.
We note that by a convention in epidemiology models all parameters in (2) are assumed
to be positive.
Summing up the equations in (2) gives immediately the ODE system for the time evolution
of the total populations of humans and mosquitos:

Dδ
tNh(t) = Λh − k1Nh(t)

Dδ
tNm(t) = Λm − k2Nm(t)

(3)
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1.2. Non-negativity and boundedness of solutions. The positivity and boundedness
of the solutions of an epidemiological system are essential properties. Therefore, it is
important to prove that all subpopulations in the system (2) is non-negative and bounded
for all time t ≥ 0. The following result show how to confirm these two properties.

Theorem 1.1. The dynamical system (2) exhibits boundedness for all non-negative initial
conditions which are not all identically zero in the entire region given by the closed region

Ω =

{
(Sh, Ih, Sm, Im) ∈ R4

+ : 0 ≤ Nh ≤ Λh

k1
and 0 ≤ Nm ≤ Λm

k2

}
.

Proof. Assume that Ω =
{
(Sh, Ih, Sm, Im) ∈ R4

+

}
be any solution set of the model (1) with

some non-negative initial conditions such as

Nh(0) = Sh(0) + Ih(0) ≥ 0 (4)

corresponding to any other non-negative initial conditions on Sh, Ih. Form (3),

dNh

dt
≤ Λh − k1Nh(t)

Solving this equation leads to

0 ≤ Nh(t) ≤
Λh

k1
+Nh0e

−k1t

where Nh0 is the initial value of the total population of the dynamical system. Thus, for
t → ∞, we have

0 ≤ Nh(t) ≤
Λh

k1
(5)

Hence Nh(t) is positive and bounded, and Ω is the largest set for which the solutions are
positive and bounded.

Similarly, we can prove for Nm that if Nm(0) ≤ Λm

k2
, then for t > 0, Nm(t) ≤ Λm

k2
. □

1.3. Basic Reproduction Number. To find basic reproduction number we consider the

D(Ψ(t)) = F (Ψ(t))− V (Ψ(t))

where F represents the Infected population and V represents the Natural death.
So,

F =

[
β1ShIh + β2ShIm

µSmIh

]
and V =

[
k1Ih
k2Im

]
Jacobian matrix for F and V are

JF =

[
β1Sh β2Sh

µSm 0

]
and JV =

[
k1 0
0 k2

]
at equilibrium point E0 = (Λh

k1
, 0, Λm

k2
, 0)

JF (E0) =

[
β1Λh
k1

β2Λh
k1

µΛm

k2
0

]
and JV (E0) =

[
k1 0
0 k2

]
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The reproduction number is obtain from eigen value of JFJ
−1
V

consider,

JF (E0)J
−1
V (E0) =

[
β1Λh
k1

β2Λh
k1

µΛm

k2
0

]
.

[ 1
k1

0

0 1
k2

]

=

[
β1Λh

k21

β2Λh
k1k2

µΛm
k1k2

0

]
The basic reproduction number is the eigen value of above matrix and given by

R0 =
β1Λhk2 +

√
β2
1Λ

2
hk

2
2 + 4k21β2µΛhΛm

2k21k2

1.4. Stability Analysis. The stability analysis of the mathematical model involves deter-
mining whether the disease-free equilibrium point is stable. This equilibrium occurs when
there are no infected individuals in the population. Stability analysis typically involves
examining the eigenvalues of the Jacobian matrix evaluated at the disease-free equilibrium
point. If all eigenvalues have negative real parts, the equilibrium is stable. Conversely, if
any eigenvalue has a positive real part, the equilibrium is unstable.
Consider the Jacobian Matrix of system 2,

J =


−k1 −β1Sh0 0 −β2Sh0

β1Ih0 + β2Im0 β1Sh0 − k1 0 β2Sh0

0 −µSm0 −k2 0
0 µSm0 0 −k2


At equilibrium point E0 = (Λh

k1
, 0, Λm

k2
, 0),

J(E0) =


−k1 −β1

Λh
k1

0 −β2
Λh
k1

0 β1
Λh
k1

− k1 0 β2
Λh
k1

0 −µΛm
k2

−k2 0

0 µΛm
k2

0 −k2


The Characteristic equation of J(E0)− λI is obtained as

−k1 − λ −β1
Λh
k1

0 −β2
Λh
k1

0 β1
Λh
k1

− k1 − λ 0 β2
Λh
k1

0 −µΛm
k2

−k2 − λ 0

0 µΛm
k2

0 −k2 − λ

 = 0

[
A B
C D

]
= 0

Where,

A =

[
−k1 − λ −β1

Λh
k1

0 β1
Λh
k1

− k1 − λ

]

B =

[
0 −β2

Λh
k1

0 β2
Λh
k1

]
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C =

[
0 −µΛm

k2
0 µΛm

k2

]

D =

[
−k2 − λ 0

0 −k2 − λ

]
The eigen values of J(E0) is same as the eigen values of A&D.
The eigen values of A can be obtained by[

−k1 − λ −β1
Λh
k1

0 β1
Λh
k1

− k1 − λ

]
= 0

(−k1 − λ)(β1
Λh

k1
− k1 − λ) = 0

−k1
β1Λh

k1
+ k21 + k1λ− λ

β1Λh

k1
+ k1λ+ λ2 = 0

λ2 + λ(2k1 −
β1Λh

k1
) + k21 − β1Λh = 0

λ =

−(2k1 − β1Λh
k1

)±
√
4k21 −

4k1β1Λh
k1

+
β2
1Λ

2
h

k21
− 4k21 + 4β1Λh

2

λ =
−2k1 +

β1Λh
k1

± β1Λh
k1

2

λ =
−2k1 +

β1Λh
k1

− β1Λh
k1

2
or

−2k1 +
β1Λh
k1

+ β1Λh
k1

2

λ = −k1 or − (k1 +
β1Λh

k1
)

∴ λ = −k1 or − (k1 +
β1Λh

k1
)

The eigen values of D can be obtained by

D =

[
−k2 − λ 0

0 −k2 − λ

]
(k2 + λ)2 − 0 = 0

λ = −k2 , −k2

Since all the parameters are positive, λ < 0 for all the cases.
The model is stable as all the eigen values are negative.

2. Preliminary definition

We suggest modifications to certain fundamental definitions and preliminary concepts
utilized in this study concerning fractional derivatives and integrals, which possess numer-
ous properties and definitions.

Definition 2.1. The Riemann-Liouville integral of a function F(t) ∈ Cδ (δ ≥ −1) having
fractional order (η > 0) is presented as follows [12–15]:

J ηF(t) =
1

Γ(ζ)

t∫
0

(tv)ζ−1F(v)dv, (6)



K. SHAH et al.: FRACTIONAL-ORDER MODELING OF ZIKA VIRUS TRANSMISSION: ... 255

J 0F(t) = F(t). (7)

Definition 2.2. The Caputo fractional derivative of F ∈ Cm
−1 is presented as follows

[12,15]:

Dδ
tF(t) =

1

Γ(m− δ)

t∫
0

(t− v)m−δ−1F(v)dv,m− 1 < δ ≤ m,m ∈ N. (8)

Definition 2.3. The Natural Transform (NT) of F(t) is denoted by N [F(t)] for t ∈ R
and defined as [15,17]

N [F(t)] = R[s, ω] =

∞∫
−∞

e−stF(ωt)dt, s, ω ∈ (−∞,∞), (9)

where s and ω are the NT variables. Now, we present NT as

N [F(t)H(t)] = N+[F(t)] = R+(s, ω) =

∞∫
0

e−stF(ωt)dt, s, ω ∈ (0,∞), and t ∈ R, (10)

where H(t) symbolises the Heaviside function. Further, for s = 1, the Eq. (10) signifies
the Sumudu transform and for ω = 1, Eq. (10) is simplifies to the Laplace transform.

Definition 2.4. For the function R(s, ω), the inverse NT is stated as [15]

N−1[R(s, ω)] = F(t),∀ t ≥ 0. (11)

Theorem 2.1. If R(s, ω) is the natural transform of F(t), then the natural transform of
the Riemann-Liouville fractional integral for F(t) of order δ denoted by J δF(t) is given
by

N+[J δF(t)] =
ωδ

sδ
R(s, ω). (12)

Theorem 2.2. Let R(s, ω) be the natural transform of F(t), then the NT Rδ(s, ω) of the
Riemann-Liouville fractional derivative of F(t) is denoted by DδF(t) and defined as

N+[DδF(t)] = Rδ(s, ω) =
sδ

ωδ
R(s, ω)−

m−1∑
k=0

sk

ωδ−k

[
Dδ−k−1F(t)

]
t=0

, (13)

where m be any positive integer and δ is the order. Further m− 1 ≤ δ < m.

Theorem 2.3. Let R(s, ω) be the natural transform of F(t), then the NT Rδ(s, ω) of the
Caputo fractional derivative of F(t) is denoted by cDδF(t) and defined as

N+[cDδF(t)] = Rc
δ(s, ω) =

sδ

ωδ
R(s, ω)−

m−1∑
k=0

sδ−(k+1)

ωδ−k

[
DkF(t)

]
t=0

, (14)

where m is any positive integer and δ is the order. Further, m− 1 ≤ δ < m.

2.1. Elementary Properties of NT.

(1) N+[1] =
1

s
,

(2) N+[tδ] =
Γ(δ + 1)ωδ

sδ+1
,

(3) N+[Fm(t)] =
sm

ωm
R(s, ω)−

m−1∑
k=0

sm−(k+1)

ωm−k

Γ(δ + 1)ωδ

sδ+1
.
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(4) (Convolution Theorem of NT) N+[F1(t) ∗ F2(t)] = ωR(s, ω)G(s, ω).
(5) (NT-ST Duality (NSD)): If R(s, ω) and G(ω) are the Natural and Sumudu trans-

form of F(t) ∈ A, respectively, then

N+[F(t)] = R(s, ω) =
1

s

∞∫
0

e−tF
(
ωt

s

)
dt =

1

s
G
(ω
s

)
.

2.2. The Fundamental Aspect of Natural Decomposition Transform. To demon-
strate the fundamental theory and solution procedure of FNDM, we consider

Dδ
tω(x, t) +Rω(x, t) + Fω(x, t) = h(x, t), (15)

with initial condition
ω(x, 0) = g(x), (16)

where Dδu(x, t) signifies the fractional Caputo derivative of ω(x, t),R and F respectively
are the linear and nonlinear differential operator, and h(x, t) is the source term. On
applying NT and by the assist of Theorem 2, then(15) provides

U(x, s, ω) = ωδ

sδ

n−1∑
k=0

sδ−(k+1)

ωδ−k
[Dkω(x, t)]t=0 +

ωδ

sδ
N+[h(x, t)]− ωδ

sδ
N+[Rω(x, t) + Fω(x, t)]

(17)
Apply the inverse NT on Eq(17) to get

ω(x, t) = G(x, t)−N−1

[
ωδ

Sδ
N+[Rω(x, t) + Fω(x, t)]

]
(18)

From non-homogeneous term and given initial condition, G(x, t) is exists. The infinite
series solution is defined as follows

ω(x, t) =
∞∑
n=0

ωn(x, t), Fω(x, t) =
∞∑
n=0

An, (19)

Where the An is indicating the nonlinear term of Fω(x, t). By using the Eqs(18) and (19),
we have

∞∑
n=0

ωn(x, t) = G(x, t)−N−1

[
ωδ

Sδ
N+

[
R

∞∑
n=0

ωn(x, t)

]
+

∞∑
n=0

An

]
(20)

By comparing both sides of Eq(20), we obtain

ω0(x, t) = G(x, t),

ω1(x, t) = −N−1

[
ωδ

sδ
N+[Rω0(x, t)] +A0

]
,

uω2(x, t) = −N−1

[
ωδ

sδ
N+[Rω1(x, t)] +A1

]
,

...

Similarly, we obtain the recursive relation in general form for n ≥ 1 and define as

ωn+1(x, t) = −N−1

[
ωδ

sδ
N+[Rωn(x, t)] +An

]
, (21)
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Lastly, the approximate solution is defined as follows

ω(x, t) =
∞∑
n=0

ωn(x, t). (22)

2.3. Convergence Analysis & Uniqueness of FNDM Solution. In this section, we
explore the uniqueness and convergence of the FNDM to gain a better understanding of
its properties.

Theorem 2.4. [15] Let |R(ω)−R(ω∗)| < λ1|ω − ω∗| and |F (ω)− F (ω∗)| < λ2|ω − ω∗|,
where m : = ω(β, t) and ω∗ : = ω∗(β, t) are values of two different functions and λ1, λ2

are Lipschitz constants.
R and F are the operators mentioned in (15). Then for FNDM the solution of (15) is
unique when 0 < (λ1 + λ2)(1− β + βt) < 1 for all t.

Theorem 2.5. Let I : H → H be a nonlinear operator and let m be an exact solution

of (15).
∞∑
i=0

ωi, which is obtained by (22), converges to ω, if ∃ λ, 0 ≤ λ < 1, such that

∥ωk+1∥ ≤ λ∥ωk∥,∀ k ∈ N ∪ {0}.

3. Approximate Solutions of Fractional Zika virus Model

Applying the NT and Theorem (2.3) to both sides of Eq. (2), we obtain

Sh(s, ω) =
1

s
Sh(0) +

ωδ

sδ
N+ [Λh − β1ShIh − β2ShIm − k1Sh]

Ih(s, ω) =
1

s
Ih(0) +

ωδ

sδ
N+ [β1ShIh + β2ShIm − k1Ih]

Sm(s, ω) =
1

s
Sm(0) +

ωδ

sδ
N+ [Λm − µSmIh − k2Sm]

Im(s, ω) =
1

s
Im(0) +

ωδ

sδ
N+ [µSmIh − k2Im]

(23)

Using the initial conditions into a system of Eq. (23), we obtain

Sh(s, ω) =
1

s
800 +

ωδ

sδ
N+

[
(1.2)− (0.125× 10−4)ShIh − (0.4× 10−4)ShIm − (0.004)Sh

]
Ih(s, ω) =

1

s
200 +

ωδ

sδ
N+

[
(0.125× 10−4)ShIh + (0.4× 10−4)ShIm − (0.004)Ih

]
Sm(s, ω) =

1

s
600 +

ωδ

sδ
N+

[
(0.3)− (0.475× 10−5)SmIh − (0.0014)Sm

]
Im(s, ω) =

1

s
300 +

ωδ

sδ
N+

[
(0.475× 10−5)SmIh − (0.0014)Im

]
(24)
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Apply the inverse NT to Eq. (24) to obtain

Sh(t) = 800

+N−1

[
ωδ

sδ
N+

[
(1.2)− (0.125× 10−4)ShIh − (0.4× 10−4)ShIm − (0.004)Sh

]]
Ih(t) = 200 +N−1

[
ωδ

sδ
N+

[
(0.125× 10−4)ShIh + (0.4× 10−4)ShIm − (0.004)Ih

]]
Sm(t) = 600 +N−1

[
ωδ

sδ
N+

[
(0.3)− (0.475× 10−5)SmIh − (0.0014)Sm

]]
Im(t) = 300 +N−1

[
ωδ

sδ
N+

[
(0.475× 10−5)SmIh − (0.0014)Im

]]
(25)

Assume an infinite series solution for the unknown functions Sh(t), Ih(t), Sm(t), and Im(t)
of the form

Sh(t) =

∞∑
n=0

Shn(t), Ih(t) =

∞∑
n=0

Ihn(t), Sm(t) =

∞∑
n=0

Smn(t), Im(t) =

∞∑
n=0

Imn(t) (26)

Using Eq. (26), we can rewrite Eq. (24) in the form

∞∑
n=0

Shn(t) = 800 +N−1
[ωδ

sδ
N+

[
(1.2)− (0.125× 10−4)

∞∑
n=0

An − (0.4× 10−4)

∞∑
n=0

Bn − (0.004)

∞∑
n=0

Shn(t)

] ]
∞∑
n=0

Ihn(t) = 200 +N−1
[ωδ

sδ
N+

[
(0.125× 10−4)

∞∑
n=0

An + (0.4× 10−4)

∞∑
n=0

Bn − (0.004)

∞∑
n=0

Ihn(t)

] ]
∞∑
n=0

Smn(t) = 600

+N−1

[
ωδ

sδ
N+

[
(0.3)− (0.475× 10−5)

∞∑
n=0

Cn − (0.0014)

∞∑
n=0

Smn(t)

]]
∞∑
n=0

Imn(t) = 300 +N−1

[
ωδ

sδ
N+

[
(0.475× 10−5)

∞∑
n=0

Cn − (0.0014)

∞∑
n=0

Imn(t)

]]
(27)

where, An,Bn, and Cn are the Adomian polynomials that represents the nonlinear term
Shn(t)Ihn(t), Shn(t)Imn(t), and Smn(t)Ihn(t) resp. Then by comparing both sides of Eq.
(27), we can easily generate the recursive relation as follows:

Sh0(t) = 800

Ih0(t) = 200

Sm0(t) = 600

Im0(t) = 300
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Sh1(t) = N−1

[
ωδ

sδ
N+

[
(1.2)− (0.125× 10−4)A0 − (0.4× 10−4)B0 − (0.004)Sh0(t)

]]
Ih1(t) = N−1

[
ωδ

sδ
N+

[
(0.125× 10−4)A0 + (0.4× 10−4)B0 − (0.004)Ih0(t)

]]
Sm1(t) = N−1

[
ωδ

sδ
N+

[
(0.3)− (0.475× 10−5)C0 − (0.0014)Sm0(t)

]]
Im1(t) = N−1

[
ωδ

sδ
N+

[
(0.475× 10−5)C0 − (0.0014)Im0(t)

]]

Sh2(t) = N−1

[
ωδ

sδ
N+

[
(1.2)− (0.125× 10−4)A1 − (0.4× 10−4)B1 − (0.004)Sh1(t)

]]
Ih2(t) = N−1

[
ωδ

sδ
N+

[
(0.125× 10−4)A1 + (0.4× 10−4)B1 − (0.004)Ih1(t)

]]
Sm2(t) = N−1

[
ωδ

sδ
N+

[
(0.3)− (0.475× 10−5)C1 − (0.0014)Sm1(t)

]]
Im2(t) = N−1

[
ωδ

sδ
N+

[
(0.475× 10−5)C1 − (0.0014)Im1(t)

]]

We continue in this manner to obtain

Shn+1(t) = N−1

[
ωδ

sδ
N+

[
(1.2)− (0.125× 10−4)An − (0.4× 10−4)Bn − (0.004)Shn(t)

]]
Ihn+1(t) = N−1

[
ωδ

sδ
N+

[
(0.125× 10−4)An + (0.4× 10−4)Bn − (0.004)Ihn(t)

]]
Smn+1(t) = N−1

[
ωδ

sδ
N+

[
(0.3)− (0.475× 10−5)Cn − (0.0014)Smn(t)

]]
Imn+1(t) = N−1

[
ωδ

sδ
N+

[
(0.475× 10−5)Cn − (0.0014)Imn(t)

]]
(28)

Using Eq. (28), we can easily compute the remaining components as follows:

Sh1(t) = −13.6
tδ

Γ(δ + 1)

Ih1(t) = 10.8
tδ

Γ(δ + 1)

Sm1(t) = −1.11
tδ

Γ(δ + 1)

Im1(t) = 0.15
tδ

Γ(δ + 1)
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Sh2(t) = 1.2
tδ

Γ(δ + 1)
+

0.1388 t2δ

Γ(2δ + 1)

Ih2(t) = −0.1276 t2δ

Γ(2δ + 1)

Sm2(t) = 0.3
tδ

Γ(δ + 1)
− 0.0281715 t2δ

Γ(2δ + 1)

Im2(t) =
0.0295155 t2δ

Γ(2δ + 1)
.

We continue in this manner, and after two iterations, we obtain the approximate solution
given by

Sh(t) =
∞∑
n=0

Shn(t)

= 800− 13.6
tδ

Γ(δ + 1)
+ 1.2

tδ

Γ(δ + 1)
+

0.1388 t2δ

Γ(2δ + 1)

(29)

Ih(t) =

∞∑
n=0

Ihn(t)

= 200 + 10.8
tδ

Γ(δ + 1)
− 0.1276 t2δ

Γ(2δ + 1)
+ · · ·

(30)

Sm(t) =

∞∑
n=0

Smn(t)

= 600− 1.11
tδ

Γ(δ + 1)
+ 0.3

tδ

Γ(δ + 1)
− 0.0281715 t2δ

Γ(2δ + 1)
+ · · ·

(31)

Im(t) =
∞∑
n=0

Imn(t)

= 300 + 0.15
tδ

Γ(δ + 1)
+

0.0295155 t2δ

Γ(2δ + 1)
+ · · ·

(32)

4. Discussion and Outcomes

In this section, we delve into the behavior of the solutions derived from the transmission
model of the Zika virus as per system (2), utilizing numerical findings. The parameters
of the model are set as follows: Λh = 1.2,Λm = 0.3, k1 = 0.004, k2 = 0.0014, β1 =
0.125 × 10−4, β2 = 0.4 × 10−4, and µ = 0.475 × 10–5. Additionally, the initial values are
designated as Sh(0) = 800, Ih(0) = 200, Sm(0) = 600, and Im(0) = 300.
Fig. 2 illustrates the population of susceptible individuals (Sh), while Fig. 3 displays the
population of infected individuals (Ih), considering both integer-order derivative (δ = 1)
and fractional-order derivatives (δ = 0.98, 0.96, 0.94, 0.92, 0.9). In Fig. 2, it is evident that
the trend of Sh remains consistent for both types of derivatives, gradually decreasing over
time, indicating the increasing exposure of all healthy individuals to the disease. However,
the numerical values obtained differ, with lower derivative orders yielding higher numerical
outcomes.
Similarly, in Fig. 3, the behavior of Ih remains consistent across both derivatives, with
varying numerical values. As the derivative order decreases, the numerical value for Ih
increases noticeably over time, with a significant discrepancy in values observed. Notably,
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Figure 2. Plots illus-
trating the susceptible
population, Sh(t), are
presented for both
integer-order derivative
at δ = 1 and fractional-
order derivatives with δ
values ranging from 0.98
to 0.90.

Figure 3. Plots illus-
trating the infected pop-
ulation, Ih(t), are pre-
sented for both integer-
order derivative at δ =
1 and fractional-order
derivatives with δ values
ranging from 0.98 to 0.90.

Fig. 3 depicts Ih reaching its peak within the initial 100 days, followed by a gradual
decline towards an equilibrium point.
Figs. 4 and 5 depict susceptible mosquitoes (Sm) and infected mosquitoes (Im) respec-
tively. The behavior of these functions remains consistent across both derivatives, with
differing numerical outcomes. Over time, the population of healthy mosquitoes diminishes,
indicating increased exposure to the disease, while the population of infected mosquitoes
steadily rises.

5. Conclusion

We have developed a novel fractional-order mathematical model to analyze the trans-
mission dynamics of the Zika virus. By incorporating a fractional-order Caputo deriva-
tive, we have established sufficient conditions for the existence, uniqueness, and stability
of both disease-free in terms of the basic reproduction number. Furthermore, we have
demonstrated the positivity and boundedness of solutions within a feasible region. To
validate our theoretical findings, we have conducted numerical simulations using the Frac-
tional Natural Decomposition Method for specific parameter settings: Λh = 1.2,Λm =
0.3, k1 = 0.004, k2 = 0.0014, β1 = 0.125 × 10−4, β2 = 0.4 × 10−4, and µ = 0.475 × 10–5.
Additionally, the initial values are designated as Sh(0) = 800, Ih(0) = 200, Sm(0) = 600,
and Im(0) = 300., highlighting the influence of fractional derivatives on the dynamics of
disease transmission.
Fractional calculus has gained significant attention in recent years due to its effectiveness
in modeling complex real-world phenomena, including infectious disease dynamics. Re-
searchers have successfully applied fractional-order models to study diseases such as HIV,
AIDS, and COVID-19, capturing memory effects and nonlocal influences more accurately
than classical models. In future work, we aim to explore the qualitative and numerical
aspects of our proposed model under different fractional-order derivatives using real data.
This ongoing research will provide deeper insights into the impact of fractional dynamics
on Zika virus transmission and contribute to the development of more effective control
strategies. Our findings will be reported in a future publication.
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Figure 4. Graphs de-
picting the susceptible
mosquito population,
Sm(t), are displayed for
both the integer-order
derivative at δ = 1
and fractional-order
derivatives with varying
values of δ, including
0.98, 0.96, 0.94, 0.92, and
0.90.

Figure 5. Graphs
depicting the infected
mosquito population,
Im(t), are displayed for
both the integer-order
derivative at δ = 1
and fractional-order
derivatives with varying
values of δ, including
0.98, 0.96, 0.94, 0.92, and
0.90.
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