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q∗-RUNG ORTHOPAIR NEUTROSOPHIC SUBSPACES AND NODEC

SPACES

V. SHYAMALADEVI1, G. K. REVATHI2∗, §

Abstract. The study explores the concept of q∗-rung orthopair neutrosophic topolog-
ical spaces, beginning with foundational results on q∗-rung orthopair neutrosophic sets.
It defines subspace topology within these spaces and analyzes various properties, par-
ticularly q∗-rung orthopair neutrosophic nodec spaces. These are examined under the
condition that every q∗-rung orthopair neutrosophic nowhere dense subset is q∗-rung
orthopair neutrosophic closed. Additionally, as specific examples of nodec spaces, the
study investigates submaximal spaces and q∗-rung orthopair neutrosophic doors. Rel-
evant characteristics and behaviors are methodically examined. Interestingly, it shows
that a q∗-rung orthopair neutrosophic nodec space can be obtained by combining two
discontinuous q∗-rung orthopair neutrosophic closed and q∗-rung orthopair neutrosophic
dense (or open) spaces. Furthermore, the way these nodec spaces behave under different
operations is examined.

Keywords: q∗-rung orthopair neutrosophic set, q∗-rung orthopair neutrosophic
topological space, q∗-rung orthopair neutrosophic point, q∗-rung orthopair neutrosophic
subspaces, q∗-rung orthopair neutrosophic nodec space and q∗-rung orthopair neutro-
sophic continuous.
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1. Introduction

Classical topology and set theory deal with the binary concepts of membership and
non-membership. However, many real-world situations involve uncertainty, hesitation, or
indeterminacy. To overcome this limitation, neutrosophic sets were introduced, and later,
q-rung orthopair neutrosophic sets emerged as a more flexible and powerful extension. Un-
certainty and indeterminacy are common in real-world data mining situations, rendering
traditional mathematical frameworks inadequate. A strong tool for managing such com-
plications is provided by neutrosophic sets. Neutosophic sets, a generalization of fuzzy,
intuitionistic, Boolean, and paraconsistent sets, are special in that they explicitly include
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ment of Mathematics, 2026; all rights reserved.

266



V. SHYAMALADEVI, G. K. REVATHI: Q∗-RUNG ORTHOPAIR NEUTROSOPHIC SUBSPACES ... 267

a degree of indeterminacy in addition to truth and falsehood. q-rung orthopair neutro-
sophic sets enhance the modeling of uncertainty by incorporating three degrees: truth,
falsity, and indeterminacy. In this structure, truth and falsity components are dependent
and bounded by the q-power constraint, while the indeterminacy component remains in-
dependent. Specifically, the constraint T q + F q + Iq ≤ 2 where q is a positive integer
(q ≥ 1) allows for a more refined representation of uncertainty compared to traditional
fuzzy, intuitionistic fuzzy, or Pythagorean fuzzy sets. Because of this, q-rung orthopair
neutrosophic sets are highly useful for processing ambiguous or linguistically stated data,
particularly in situations involving decision-making. The flexibility of the parameter q,
which may be adjusted to account for different degrees of vagueness and hence model more
complicated uncertainty, is their main advantage. Extending topological concepts into this
framework allows for the definition of spaces such as q-rung orthopair neutrosophic nodec
spaces. These spaces facilitate exploration of the behavior of neutrosophic nowhere dense
sets and their relationships with neutrosophic closed sets.

1.1. Literature review. This literature review delves into existing research on q-rung
orthopair neutrosophic sets and their application to nodec spaces. The concept of fuzzy
sets, introduced by Zadeh L. [27] in 1965, marked a significant advancement in mathemat-
ical frameworks by allowing for partial membership. This concept was further expanded
upon with the introduction of intuitionistic fuzzy sets by Atanassov K. T. [2] in 1986,
which incorporate both membership and non-membership degrees. However, both fuzzy
and intuitionistic fuzzy sets have limitations in dealing with high levels of uncertainty
and indeterminacy. In 2013 Revathi G. K. and et. al [9] introduced the concept of Or-
dered (r, s) intuitionistic fuzzy quasi-uniform regular Gδ extremally disconnected spaces.
In a subsequent study, Revathi G. K. and et. al [10] presented the notion of regular Gδ-
continuous mappings.The concept of the q-rung orthopair fuzzy set, where q is a positive
integer, was later introduced by Yager R. R. [25]. In q-rung orthopair fuzzy set, the sum
of the qth powers of membership and non-membership does not exceed 1. This generaliza-
tion allows for greater flexibility in defining the degrees of truth and falsehood, providing
a more comprehensive model for uncertainty. When q = 1, the structure reduces to an
intuitionistic fuzzy set, while for q = 2, it forms a Pythagorean fuzzy set [24], and for
q = 3, a Fermatean fuzzy set [12]. This led to the development of neutrosophic sets by
Smarandache F. [15] in 1998. Neutrosophic sets introduced three components: truth (T),
indeterminacy (I), and falsity (F), each of which can independently take values in the
range between 0 and 1. This allows for the representation of incomplete, inconsistent, and
ambiguous information. Neutrosophic topological space can be applied to many engineer-
ing problems. In 2024, Shyamaladevi V. and Revathi G. K. [13] conducted an extensive
review of numerous papers exploring the practical applications of neutrosophic topology,
a remarkable extension of classical topology. This innovative field addresses challenges
rooted in uncertainty and indeterminacy, uncovering its relevance across diverse domains.
Soft neutrosophic topology serves as an extension of neutrosophic topology, combining the
strengths of soft sets and neutrosophic sets to offer a more adaptable toolset. Bera T.
and Mahapatra N. K. [4], [5] introduced the concept of neutrosophic soft sets, exploring
fundamental notions such as neutrosophic soft interior, neutrosophic soft closure, neutro-
sophic soft neighborhood, neutrosophic soft boundary, and regular neutrosophic soft sets.
Leveraging this concept, many mathematicians have contributed to diverse mathematical
structures. For instance, in 2024, Narmada Devi R. and Parthiban Y. [6] established the
theoretical foundations of a groundbreaking framework and demonstrated its practical
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relevance in healthcare decision-making. Furthermore, [8] presented innovative ideas, in-
cluding neutrosophic over soft semi-j open sets and neutrosophic over soft hyperconnected
spaces, supported by a numerical illustration to identify the most effective approach for
novel pharmaceutical applications using the neutrosophic over soft measure of correlation.
The q-rung orthopair neutrosophic sets, introduced by Voskoglou M. G. and et. al [22] in
2024, extend both neutrosophic and q-rung orthopair sets. In q-rung orthopair sets, the
sum of the q-th powers of membership and non-membership degrees is limited to 1. In
contrast, q-rung orthopair neutrosophic sets define truth, falsehood, and indeterminacy
degrees, allowing the total sum to reach 2, with the parameter q controlling the sum. This
provides a more comprehensive framework for modeling uncertainty. This enables the
model to handle even higher levels of uncertainty compared to traditional neutrosophic
and intuitionistic fuzzy models. Nodec spaces are topological spaces where every nowhere
dense set is closed; in fuzzy topology, fuzzy nodec spaces extend this by treating fuzzy
nowhere dense sets as fuzzy closed sets. This concept was notably explored by Sostak A.
P. in 1985 [18]. Neutrosophic nodec spaces generalize classical topology by incorporat-
ing uncertainty, indeterminacy, and hesitation through neutrosophic sets. These spaces
are valuable in areas like decision-making, machine learning, and data clustering. Build-
ing on this, q∗-rung orthopair neutrosophic nodec spaces introduce a three-valued logic
framework, allowing more flexible representation of membership, non-membership, and
indeterminacy under q∗-rung orthopair constraints.

1.2. Motivation and Contribution of the Study. Several main goals serve as the
motivation for this paper. Initially, it seeks to create a new class of q∗ -rung orthopair
neutrosophic topological spaces, namely q∗ -rung orthopair neutrosophic nodec spaces, in
order to facilitate future studies in this field. Secondly, the framework showcased here
incorporates and expands upon earlier ideas, including submaximal spaces, while bring-
ing in fresh thoughts that may improve a number of advancements in mathematical and
practical fields. With the introduction of q∗ -rung orthopair neutrosophic sets and the ex-
tension of nodec spaces into the neutrosophic domain, this study aims to develop a flexible
and reliable tool for practical applications that require advanced uncertainty management
strategies. In finality, the investigation highlights the importance of topology as a starting
point for recent advances in mathematics and applications. The following are the primary
contributions of this paper:

(i) The innovative ideas, q∗-rung orthopair neutrosophic topological space and q∗-rung
orthopair neutrosophic points are introduced.

(ii) The notion of q∗-rung orthopair neutrosophic subspaces is defined in this paper
along with the related theorems.

(iii) This study defines the concept of q∗-rung orthopair neutrosophic nodec space and
explores the associated theorems.

2. Preliminaries

This part introduces abbreviations and their expansions and also talk about the essential
preliminary definitions in this section in order to comprehend the outcomes that follow.

Expansion Abbreviation
Fuzzy set FS
q-rung orthopair fuzzy set q-ROFS
Neutrosophic set NS
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Fuzzy Topological FT
Neutrosophic topological space NTS
q-rung orthopair neutrosophic q-RON
q∗-rung orthopair neutrosophic topological space q∗-RONTS
q∗-rung orthopair neutrosophic point q∗-RONP
q∗-rung orthopair neutrosophic continuous q∗-RONC

Definition 2.1. [27] Assume X is not an empty set. A FS A is derived from A =
{(x , µA(x )) : x ∈ X }, where µA(x ) : X −→ [0, 1] represents the belongingness for the FS
A. FS is a group of things with varying degrees of belongingness.

Definition 2.2. [25] An q-ROFS A in the universal discourse X is A = {(x , µA(x ), νA(x )),
x ∈ X } where 0 ≤ µq

A(x )+ νqA(x ) ≤ 1, q is a positive integer (q ≥ 1) is called q-ROFS and
µA : X −→ [0, 1] is the degree of belongingness and νA : X −→ [0, 1] is the degree of non
belongingness of the element x ∈ X to the set A respectively.

Definition 2.3. [17] Assuming that X is not an empty set , then the set A = {(x , µA(x ),
πA(x ), νA(x )), x ∈ X} is called NS on X , where 0 ≤ µA(x ) + πA(x ) + νA(x ) ≤ 3 for all
x ∈ X , νA : X −→ [0, 1] is the degree of non-belongingness and πA : X −→ [0, 1] is
the degree of indeterminacy and µA : X −→ [0, 1] is the degree of belongingness of every
x ∈ X to the set A as well.

Definition 2.4. [11] A set X that is not empty. Then the set is NT that meets these three
axioms:

(i) 0N , 1N ∈ τ
(ii) A1

⋂
A2 ∈ τ for any A1, A2 ∈ τ ,

(iii)
⋃

Ai ∈ τ for all {Ai : i ∈ J} ⊆ τ .

The combination of two (X , τ) is referred to as NTS. Neutrosophic open sets make up the
members of τ . K c ∈ τ indicates that a set K is neutrosophic closed. In this NTS, K c

represents all Neutrosophic closed sets.

Definition 2.5. [22] Assume that the set X is not empty, then the set Aqn =
{(x , µAqn(x ), πAqn(x ), νAqn(x )), x ∈ X } where 0 ≤ µq

Aqn
(x ) + νqAqn

(x ) ≤ 1, q ≥ 1, and

for all x ∈ X such that 0 ≤ µq
Aqn

(x ) + πq
Aqn

(x ) + νqAqn
(x ) ≤ 2 is called q-RONS where

µAqn : X −→ [0, 1] is the degree of belongingness , νAqn : X −→ [0, 1] is the degree of non-
belongingness and πAqn : X −→ [0, 1] is the degree of indeterminacy of the element x ∈ X
to the set Aqn . The components µq

Aqn
(x ) and νqAqn

(x ) are dependent and the component

πq
Aqn

(x ) is independent. Set of all q-RONS over X is denoted by Nqn(X)

Example 2.1. Let X = {x1, x2, x3} and Aqn be a q-RONS that can be written as
Aqn = {(x1, µAqn(x1), πAqn(x1), νAqn(x1)), (x2, µAqn(x2), πAqn(x2), νAqn(x2)),
(x3, µAqn(x3), πAqn(x3), νAqn(x3))} = {(x1, 0.4, 0.9, 0.5), (x2, 0.5, 0.5, 0.5), (x3, 0.5, 0.8, 0.4)}
Here, for all {x1, x2, x3} ∈ X , q ≥ 1, 0 ≤ µq

Aqn
(x ) + νqAqn

(x ) ≤ 1 and 0 ≤ µq
Aqn

(x ) +

νqAqn
(x ) + πq

Aqn
(x ) ≤ 2 .

Definition 2.6. [20] A FS A in a FTS (X, τ), is called a fuzzy nowhere dense set if there
exists no non zero fuzzy open set B in (X, τ) such that B < cl(A). That is ,int(cl(A)) = 0,
in (X, τ).

Definition 2.7. [19] Let (X, τ) be the FTS and (X, τ) is said to be fuzzy nodec space, if
each non zero fuzzy nowhere dense set is fuzzy closed in (X, τ).
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Definition 2.8. [1] Let (X, τ) be the FTS and (X, τ) is said to be fuzzy door space, if
every fuzzy sub set of X is either fuzzy open or fuzzy closed in (X, τ).

Definition 2.9. [3] A FTS (X, τ) is termed a fuzzy submaximal space if, for every FS A
in (X, τ) such that cl(A) = 1, it follows that A ∈ τ . That is fuzzy submaximal space if
each fuzzy dense set in (X, τ) is a fuzzy open set in (X, τ).

Definition 2.10. [7] A neutrosophic set A in NTS (X, τ) is called neutrosophic dense if
there exists no neutrosophic closed set B in (X, τ) such that A ⊂ B ⊂ 1N .

Definition 2.11. [7] A neutrosophic set A in NTS (X, τ) is called neutrosophic nowhere
dense set if there exists no neutrosophic open set U in (X, τ) such that U ⊂ Ncl(A). That
is NintNcl(A) = 0N

Definition 2.12. [21] For a q-RON set
Aqn = {(x , µAqn(x ), πAqn(x ), νAqn(x ), x ) ∈ X } of the non-empty fixed set X , the q∗-RON
set A∗

qn, is defined to be the following triple structure:
A∗

qn = {(µ∗
A∗

qn
, π∗

A∗
qn
, ν∗A∗

qn
)} where µ∗

A∗
qn

= min(µAqn , 1−max(πAqn , νAqn)) ,

π∗
A∗

qn
= min(πAqn , 1 − max(µAqn , νAqn)) ν∗A∗

qn
= min(νAqn , 1 − max(µAqn , πAqn)) and 0 ≤

µ∗q
A∗

qn
(x ) + ν∗qA∗

qn
(x ) ≤ 1 and for all x ∈ X such that 0 ≤ µ∗q

A∗
qn
(x ) + ν∗qA∗

qn
(x ) + π∗q

A∗
qn
(x ) ≤ 2

is called q∗-RONS where q ≥ 1, µ∗
A∗

qn
: X −→ [0, 1] is the degree of belongingness ,

ν∗A∗
qn

: X −→ [0, 1] is the degree of non-belongingness and π∗
A∗

qn
: X −→ [0, 1] is the degree

of indeterminacy of the element x ∈ X to the set A∗
qn . Set of all q∗-RON set over X is

denoted by N∗
qn(X)

Example 2.2. Let X = {xqn1, xqn2, xqn3} and Aqn be a q-RONS that can be written as
Aqn = {(xqn1, µAqn(xqn1), πAqn(xqn1), νAqn(xqn1)), (xqn2, µAqn(xqn2), πAqn(xqn2), νAqn(xqn2)),
(xqn3, µAqn(xqn3), πAqn(xqn3), νAqn(xqn3))} = {(xqn1, 0.4, 0.9, 0.5), (xqn2, 0.5, 0.1, 0.5),
(xqn3, 0.5, 0.8, 0.4)}. Here, for all {xqn1, xqn2, xqn3} ∈ Xqn , 0 ≤ µq

Aqn
(xqn) + νqAqn

(xqn) ≤
1, 0 ≤ µq

Aqn
(xqn) + νqAqn

(xqn) + πq
Aqn

(xqn) ≤ 2 .

Then the q∗-RON set A∗
qn is A∗

qn = {(xqn1, 0.1, 0.5, 0.1), (xqn2, 0.5, 0.1, 0.5), (xqn3, 0.2, 0.5, 0.2)}.

Definition 2.13. [21] Let X ̸= ϕ , A∗
qn and B∗

qn be the q∗-RON subsets in X with the
notation A∗

qn = {(x , µ∗
A∗

qn
(x ), π∗

A∗
qn
(x ), ν∗A∗

qn
(x )) : x ∈ X } and

B∗
qn = {(x , µ∗

B∗
qn
(x ), π∗

B∗
qn
(x ), ν∗B∗

qn
(x )) : x ∈ X } . If µ∗

A∗
qn
(x ) ≤ µ∗

Bqn
(x ), π∗

Aqn
(x ) ≤ π∗

Bqn
(x )

and ν∗Aqn
(x ) ≥ ν∗Bqn

(x ) then it is denoted as A∗
qn ⊆ B∗

qn.

Definition 2.14. [21] For q∗-RONS A∗
qn and B∗

qn, A
∗
qn

⋃
B∗

qn, A
∗
qn

⋂
B∗

qn and A∗
qn

c will be
defined as

(i) A∗
qn

⋃
B∗

qn = {(x ,max{µ∗
A∗

qn(x)
, µ∗

B∗
qn(x)

},max{π∗
A∗

qn
(x ), π∗

B∗
qn
(x )},

min{ν∗A∗
qn
(x ), ν∗B∗

qn
(x )})}

(ii) A∗
qn

⋂
B∗

qn = {(xqn ,min{µ∗
A∗

qn(x)
, µ∗

B∗
qn(x)

},min{π∗
A∗

qn
(x ), π∗

B∗
qn
(x )},

max{ν∗A∗
qn
(x ), ν∗B∗

qn
(x )})}

(iii) A∗
qn

c = {(x , ν∗A∗
qn
(x ), 1− π∗

A∗
qn
(x ), µ∗

A∗
qn
(x ) : x ∈ X )}.

Remark 2.1. (i) All types of ∅∗qn and ∅qn are conceded , that is ∅qn = (0, 0, 1) = ∅∗qn.
(ii) All types of X∗

qn and Xqn are conceded, that is Xqn = (1, 1, 0) = X∗
qn.

Definition 2.15. [21] Let X ̸= ϕ and τ∗qn be a collection of q∗-RON subsets of X . If τ∗qn
satisfies the following properties then it is called a s q∗-RONT.
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(i) ∅∗qn, X∗
qn ∈ τ∗qn, where ∅∗qn = (0, 0, 1) and X∗

qn = (1, 1, 0).
(ii) For any A∗

qn1
, A∗

qn2
∈ τ∗qn then A∗

qn1

⋂
A∗

qn2
∈ τ∗qn

(iii) For all i ∈ J, if{A∗
qni

} ∈ τ∗qn then (
⋃
A∗

qni
) ∈ τ∗qn.

Then (X , τ∗qn) is called a q∗-RONTS.
Every member of q∗-RONT is called as open q∗-RONS, and its complement is closed q∗-
RONS. The set of all q∗-RON set over X is denoted by N∗

qn(Xqn).

Example 2.3. [21] Let X = {aqn, bqn, cqn} for all k ∈ {1, 2, } , Aqnk
be a q-RONS:

Aqn1 = {(aqn, 0.7, 0.5, 0.2), (bqn, 0.3, 0.5, 0.2), (cqn, 0.6, 0.3, 0.3)},
Aqn2 = {(aqn, 0.8, 0.5, 0.2), (bqn, 0.5, 0.7, 0.2), (cqn, 0.7, 0.5, 0.3)}
where for all x ∈ X , 0 ≤ µq

Aqnk
(xqn) + νqAqnk

(xqn) ≤ 1, q ≥ 1 and

0 ≤ µq
Aqnk

(xqn) + πq
Aqnk

(xqn) + νqAqnk
(xqn) ≤ 2 .

Then A∗
qn1

= {(aqn, 0.5, 0.3, 0.2), (bqn, 0.3, 0.5, 0.2), (cqn, 0.6, 0.3, 0.3)}, and
A∗

qn2
= {(aqn, 0.5, 0.2, 0.2), (bqn, 0.3, 0.5, 0.2), (cqn, 0.5, 0.3, 0.3)} are q∗-RON set.

Clearly τ∗qn = {∅∗qn, X∗
qn, A

∗
qn1

, A∗
qn2

, } is a q∗-RONT.

Definition 2.16. [21] Let (A∗
qn, τ

∗
qn1

) and (B∗
qn, τ

∗
qn2

) be any two q∗-RONTS and τ∗qn1
⊂

τ∗qn2
. Then , the τ∗qn2

q∗-RONT is said to be finer than the q∗-RONT τ∗qn1
.

Definition 2.17. [21] Let (X , τ∗qn) be q∗-RONTS and B∗
qn ⊆ X be q∗-RONS in X . If

there is an open q∗-RON subset G∗
qn such that B∗

qn ⊂ G∗
qn ⊂ X , it is said that X is a

neighborhood of B∗
qn.

Definition 2.18. [21] Let (X , τ∗qn) be q∗-RONTS and let A∗
qn = {(x , µ∗

A∗
qn
(x ), π∗

A∗
qn
(x ),

ν∗A∗
qn
(x )) : x ∈ X } be a q∗-RONS. In this case q∗-rung orthopair interior and closure for

A∗
qn are defined as

(i) intqn(A
∗
qn) =

⋃
{O∗

qni
: O∗

qni
⊂ A∗

qni
, O∗

qni
is open q∗-RONS },

(ii) clqn(A
∗
qn) =

⋂
{C∗

qni
: A∗

qni
⊂ C∗

qni
, C∗

qni
is closed q∗-RONS }.

Definition 2.19. [21] Let (X , τ∗qn1
) and (Y, τ∗qn2

) be any two q∗-RONTS and let

fqn : X −→ Y be a function. If for any open q∗-RONS B∗
qn of Y , f−1

qn (B∗
qn) is an open

q∗-RONS of X , then fqn is said to be q∗-RON continuous.

Definition 2.20. [21] Let (X , τ∗qn1
) and (Y, τ∗qn2

) be any two q∗-RONTS and let
fqn : Xqn −→ Y be a function. Then fqn is said to be q∗-RON open iff the image of each
q∗-RON in τ∗qn1

is a q∗-RON open in τ∗qn2
.

Definition 2.21. [21] Let (X , τ∗qn1
) and (Y, τ∗qn2

) be any two q∗-RONTS and let
fqn : X −→ Y be a function. Then fqn is said to be q∗-RON closed iff the image of each
q∗-RON in τ∗qn1

is a q∗-RON closed in τ∗qn2
.

Definition 2.22. [14] Let α, β, γ ∈ [0, 1] and α + β + γ ≤ 2 . A q∗-RONP P ∗
qnx(α, β, γ)

of X defined by P ∗
qnx(α, β, γ) = {x, µ∗

P ∗
qn
, π∗

P ∗
qn
, ν∗P ∗

qn
} for y ∈ X

µ∗
(P ∗

qn)
=

{
α, ify = x

0, ify ̸= x

π∗
(P ∗

qn)
=

{
β, ify = x

0, ify ̸= x

ν∗(P ∗
qn)

=

{
γ, ify = x

1, ify ̸= x
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.
The collection of all q∗-rung orthopair neutrosophic points (X, τ∗qn) is denoted by P ∗

qn.

3. q∗-Rung Orthopair Neutrosophic Subspaces

Several results pertaining to q∗-rung orthopair neutrosophic sets are attempted to be
established in this part. The q∗-rung orthopair neutrosophic subspace is then defined with
an example, and some of its properties are examined.

Definition 3.1. Let (X , τ∗qn1
) and (Y , τ∗qn2

) be any two q∗-RONTS , fqn : X −→ Y be
a function and let A∗

qn and B∗
qn be q∗-RON sets and A∗

qn ⊆ X and B∗
qn ⊆ Y . As shown

by fqn(A
∗
qn), the grade of belongingness, non-belongingness, and indefiniteness of image of

A∗
qn according to fqn are defined by

µ∗
A∗

qn,fqn(A
∗
qn)

(y) =

{
supx∈f−1

qn (x2)
µ∗
A∗

qn
(x ), if f−1

qn (y) ̸= 0

0, if f−1
qn (y) = 0

π∗
A∗

qn,fqn(A
∗
qn)

(y) =

{
supx∈f−1

qn (y) π
∗
A∗

qn
(x ), if f−1

qn (y) ̸= 0

0, if f−1
qn (y) = 0

ν∗A∗
qn,fqn(A

∗
qn)

(y) =

{
infx∈f−1

qn (y) ν
∗
A∗

qn
(x ), if f−1

qn (y) ̸= 0

1, if f−1
qn (y) = 0

Here , fqn(A
∗
qn) is a q∗-RON subsets. According to fqn, the degree of belongingness,

indefiniteness, and non-belongingness of the pre-image of A∗
qn as shown by f−1

qn (A∗
qn) is

defined by
µ∗
A∗

qn,f
−1
qn (A∗

qn)
(x ) = µ∗

A∗
qn,B∗

qn

(fqn(x )), π
∗
A∗

qn,f
−1
qn (A∗

qn)
(x ) = π∗

A∗
qn,B∗

qn

(fqn(x )),

and ν∗
A∗

qn,f
−1
qn (A∗

qn)
(x ) = ν∗A∗

qn,B∗
qn

(fqn(x )).

At the same time, the set f−1
qn (A∗

qn) is also a q∗-RON subset.

Definition 3.2. Let X and Y be any two crisp sets such that Y ̸= ∅ and Y ⊆ X. Then
we define A∗

qn = {(x, µ∗(x), π∗(x), ν∗(x)) : x ∈ X}, where µ∗ = 1, π∗ = 1, ν∗ = 0 if x ∈ Y
and µ∗ = 0, π∗ = 0, ν∗ = 1 if x ∈ X |Y . The set of all q∗-RON sets over Y will be denoted
by N∗

qn(Y ).

Definition 3.3. Let X and Y be any two crisp sets such that Y ̸= ∅ and Y ⊆ X, then
for a q∗-RON set A∗

qn ∈ Nqn(X), we define A∗
qn |Y = {(x, µ∗

A∗
qn|Y

, π∗
A∗

qn|Y
, ν∗A∗

qn|Y
) : x ∈ X},

where µ∗
A∗

qn|Y
(x) = µ∗

A∗
qn
, π∗

A∗
qn|Y

(x) = π∗
A∗

qn
, ν∗A∗

qn|Y
(x) = ν∗A∗

qn
if x ∈ Y and µ∗

A∗
qn|Y

(x) =

0, π∗
A∗

qn|Y
(x) = 0, ν∗A∗

qn|Y
(x) = 1 if x ∈ X |Y .

Remark 3.1. From the Definition 3.2 and 3.3
(i) A∗

qn |Y ∈ N∗
qn(Y ) for every A∗

qn ∈ N∗
qn(X).

(ii) Every q∗-RON set A∗
qn over Y can be considered as an q∗-RON set over X by taking

µ∗
A∗

qn
= 0, π∗

A∗
qn

= 0, ν∗A∗
qn

= 1 for all x ∈ X | Y and µ∗
A∗

qn
= 1, π∗

A∗
qn

= 1, ν∗A∗
qn

= 0

for all x ∈ X |Y
(iii) X∗

qn |Y = Y ∗
qn and ∅∗qn |Y = ∅∗qn
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Proposition 3.1. Let X,Y, Z be three sets such that ∅ ≠ Z ⊆ Y ⊆ X. Let A∗
qn ∈ N∗

qn(X)
and {A∗

qnλ
;λ ∈ △} ⊆ N∗

qn(X), where △ is an index set. Then

(i) (
⋃

λ∈△A∗
qnλ

)|Y =
⋃

λ∈△(A∗
qnλ

|Y ).
(ii) (

⋂
λ∈△A∗

qnλ
)|Y =

⋂
λ∈△(A∗

qnλ
|Y ).

(iii) A∗c
qn|Y = (A∗

qn|Y )c.
(iv) (A∗

qn|Y )|Z = (A∗
qn|Z).

Proof. (i)

(
⋃
λ∈△

A∗
qnλ

)|Y = {(x, µ∗
(∪λ∈△A∗

qnλ
)|Y , π

∗
(∪λ∈△A∗

qnλ
)|Y , ν

∗
(∪λ∈△A∗

qnλ
)|Y (x));x ∈ X}

= {(x, µ∗
(∪λ∈△A∗

qnλ
)|Y , π

∗
(∪λ∈△A∗

qnλ
)|Y , ν

∗
(∪λ∈△A∗

qnλ
)|Y (x));x ∈ Y }⋃

{(x, µ∗
(∪λ∈△A∗

qnλ
)|Y , π

∗
(∪λ∈△A∗

qnλ
)|Y , ν

∗
(∪λ∈△A∗

qnλ
)|Y (x));x ∈ X\Y }

= {(x, µ∗
∪λ∈△A∗

qnλ
(x), π∗

∪λ∈△A∗
qnλ

(x), ν∗∪λ∈△A∗
qnλ

(x)) : x ∈ Y }⋃
{(x, 0, 0, 1) : x ∈ X\Y }

= {(x,∨λ∈△µ∗
A∗

qnλ
(x),∨λ∈△π∗

A∗
qnλ

(x),∧λ∈△ν∗A∗
qnλ

(x);x ∈ Y }
= {(x,∨λ∈△µ∗

A∗
qnλ|Y (x),∨λ∈△π∗

A∗
qnλ|Y (x),∧λ∈△ν∗A∗

qnλ|Y (x);x ∈ Y }⋃
λ∈△

[{(x, µ∗
A∗

qnλ|Y (x), π
∗
A∗

qnλ|Y (x), ν
∗
A∗

qnλ|Y (x);x ∈ Y }

⋃
{(x, 0, 0, 1) : x ∈ X\Y }]

=
⋃
λ∈△

(A∗
qnλ|Y

)

(ii)

(
⋂
λ∈△

A∗
qnλ

)|Y ={(x, µ∗
(∩λ∈△A∗

qnλ
)|Y , π

∗
(∩λ∈△A∗

qnλ
)|Y , ν

∗
(∩λ∈△A∗

qnλ
)|Y (x));x ∈ X}

= {(x, µ∗
(∩λ∈△A∗

qnλ
)|Y , π

∗
(∩λ∈△A∗

qnλ
)|Y , ν

∗
(∩λ∈△A∗

qnλ
)|Y (x));x ∈ Y }⋃

{(x, µ∗
(∩λ∈△A∗

qnλ
)|Y , π

∗
(∩λ∈△A∗

qnλ
)|Y , ν

∗
(∩λ∈△A∗

qnλ
)|Y (x));x ∈ X\Y }

= {(x, µ∗
∩λ∈△A∗

qnλ
(x), π∗

∩λ∈△A∗
qnλ

(x), ν∗∩λ∈△A∗
λ
(x)) : x ∈ Y }⋃

{(x, 0, 0, 1) : x ∈ X\Y }
= {(x,∧λ∈△µ∗

A∗
qnλ

(x),∧λ∈△π∗
A∗

qnλ
(x),∨λ∈△ν∗A∗

qnλ
(x);x ∈ Y }

= {(x,∧λ∈△µ∗
A∗

qnλ|Y (x),∧λ∈△π∗
A∗

qnλ|Y (x),∨λ∈△ν∗A∗
qnλ|Y (x);x ∈ Y }⋂

λ∈△
[{(x, µ∗

A∗
qnλ|Y (x), π

∗
A∗

qnλ|Y (x), ν
∗
A∗

qnλ|Y (x);x ∈ Y }

⋃
{(x, 0, 0, 1) : x ∈ X\Y }]

=
⋂
λ∈△

(A∗
qnλ|Y

)
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(iii)

A∗c
qn|Y = {(x, µ∗

A∗c
qn|Y , π

∗
A∗c

qn|Y , ν
∗
A∗c

qn|Y ) : x ∈ X}

= {(x, µ∗
A∗c

qn
, π∗

A∗c
qn
, ν∗A∗c

qn
) : x ∈ Y }

⋃
{(x, 0, 0, 1) : x ∈ X\Y }

= {(x, µ∗
A∗c

qn
, π∗

A∗c
qn
, ν∗A∗c

qn
) : x ∈ Y }

= {(x, µ∗
A∗

qn
, π∗

A∗
qn
, ν∗A∗

qn
) : x ∈ Y }c

= {(x, µ∗
A∗

qn|Y , π
∗
A∗

qn|Y , ν
∗
A∗

qn|Y ) : x ∈ Y }c

= ({(x, µ∗
A∗

qn|Y , π
∗
A∗

qn|Y , ν
∗
A∗

qn|Y ) : x ∈ Y }
⋃

{(x, 0, 0, 1) : x ∈ Y })c

= {(x, µ∗
(A∗

qn|Y )c , π
∗
(A∗

qn|Y )c , ν
∗
(A∗

qn|Y )c) : x ∈ X}

= (A∗
qn|Y )c

(iv)

(A∗
qn|Y )|Z = {(x, µ∗

(A∗
qn|Y )|Z , π

∗
(A∗

qn|Y )|Z , ν
∗
(A∗

qn|Y )|Z) : x ∈ X}

= {(x, µ∗
A∗

qn|Y (x), π
∗
A∗

qn|Y (x), ν
∗
A∗

qn|Y (x)) : x ∈ Z}
⋃

{(x, 0, 0, 1) : x /∈ Z}

= {(x, µ∗
A∗

qn
(x), π∗

A∗
qn
(x), ν∗A∗

qn
(x)) : x ∈ Y

⋂
Z}

⋃
{(x, 0, 0, 1) : x /∈ Y

⋂
Z}

= {(x, µ∗
A∗

qn
(x), π∗

A∗
qn
(x), ν∗A∗

qn
(x)) : x ∈ Z}

⋃
{(x, 0, 0, 1) : x /∈ Z}

= {(x, µ∗
A∗

qn|Z(x), π
∗
A∗

qn|Z(x), ν
∗
A∗

qn|Z(x)) : x ∈ Z}
⋃

{(x, 0, 0, 1) : x /∈ Z}

= {(x, µ∗
A∗

qn|Z(x), π
∗
A∗

qn|Z(x), ν
∗
A∗

qn|Z(x)) : x ∈ X}

= (A∗
qn|Z)

□

Proposition 3.2. Let Y, Z be two non-empty subset of X and let A∗
qn ∈ N∗

qn(X). Then
A∗

qn |(Y ⋂
Z)= (A∗

qn |Y )
⋂
(A∗

qn |Z).

Proof.

A∗
qn |(Y ⋂

Z) = {(x, µ∗
A∗

qn|(Y
⋂

Z)(x), π
∗
A∗

qn|(Y
⋂

Z)(x), ν
∗
A∗

qn|(Y
⋂

Z)(x)) : x ∈ X}

= {(x, µ∗
A∗

qn
(x), π∗

A∗
qn
(x), ν∗A∗

qn
(x)) : x ∈ Y

⋂
Z}

⋃
{(x, 0, 0, 1) : x /∈ Y

⋂
Z}

= {(x, µ∗
A∗

qn
(x), π∗

A∗
qn
(x), ν∗A∗

qn
(x)) : x ∈ Y

⋂
Z}

= {(x, µ∗
A∗

qn
(x), π∗

A∗
qn
(x), ν∗A∗

qn
(x)) : x ∈ Y }⋂

{(x, µ∗
A∗

qn
(x), π∗

A∗
qn
(x), ν∗A∗

qn
(x)) : x ∈ Z}

= [{(x, µ∗
A∗

qn|Y (x), π
∗
A∗

qn|Y (x), ν
∗
A∗

qn|Y (x)) : x ∈ Y }
⋃

{(x, 0, 0, 1) : x /∈ Y }⋂
{(x, µ∗

A∗
qn|Z(x), π

∗
A∗

qn|Z(x), ν
∗
A∗

qn|Z(x)) : x ∈ Z}
⋃

{(x, 0, 0, 1) : x /∈ Z}]

= {(x, µ∗
A∗

qn|Y (x), π
∗
A∗

qn|Y (x), ν
∗
A∗

qn|Y (x)) : x ∈ X}⋂
{(x, µ∗

A∗
qn|Z(x), π

∗
A∗

qn|Z(x), ν
∗
A∗

qn|Z(x)) : x ∈ X}}

= (A∗
qn |Y )

⋂
(A∗

qn |Z)

□
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Proposition 3.3. Let (X, τ∗qn) be an q∗-RONTS. Let ∅ ̸= Y ⊆ X and τ∗qn |Y = {G∗
qn |Y :

G∗
qn ∈ τ∗qn}. Then (Y, τ∗qn |Y ) is a q∗-RONTS.

Proof. (i) X∗
qn, ∅∗qn ∈ τ∗qn =⇒ X∗

qn |Y , ∅∗qn |Y ∈ τ∗qn |Y . As Y ∗
qn = X∗

qn |Y and ∅∗qn =
∅∗qn |Y , so Y ∗

qn, ∅∗qn ∈ τ∗qn |Y .
(ii) Let {G∗

qni
: i ∈ △} ⊆ τ∗qn |Y then for each i ∈ △, G∗

qni
= G∗′

qni
|Y for some

G∗′
qni

∈ τ∗qn. Now
⋃

i∈△G∗
qni

=
⋃

i∈△(G∗′
qn |Y ) = (

⋃
i∈△G∗′

qn) |Y ∈ τ∗qn |Y . Therefore⋃
i∈△G∗′

qn ∈ τ∗qn.(By 3.1(i))

(iii) Let G∗
qn, H

∗
qn ∈ τ∗qn |Y . Then G∗

qn = G∗′
qn |Y and H∗

qn = H∗′
qn |Y for some G∗′

qn, H
∗′
qn ∈

τ∗qn. Now G∗
qn

⋂
H∗

qn = (G∗′
qn |Y )

⋂
H∗′

qn |Y = (G
′∗
qn

⋂
H∗′

qn) |Y ∈ τ∗qn |Y . Therefore

G∗′
qn

⋂
H∗′

qn ∈ τ∗qn by (3.1(ii)).
□

Definition 3.4. Let (X, τ∗qn) be a q∗-RONTS. Let ∅ ≠ Y ⊆ X and τ∗qn |Y = {G∗
qn |Y :

G∗
qn ∈ τ∗qn}. Then (Y, τ∗qn |Y ) is a q∗-RONTS. The topology τ∗qn |Y is called q∗-RON

relative topology of τ∗qn on Y or the q∗-RON subspace topology of Y and the q∗-RONTS
(Y, τ∗qn |Y ) is called q∗-RON subspace of the q∗-RONTS (X, τ∗qn). Members of τ∗qn |Y are
called τ∗qn |Y -open sets in Y . An q∗-RON set A∗

qn ∈ N∗
qn(Y ) such that A∗c

qn ∈ τ∗qn |Y is
called a τ∗qn |Y -closed set in Y . (Y, τ∗qn |Y ) is called a q∗-RON open subspace or q∗-RON
closed subspace of (X, τ∗qn) according as Y ∗

qn ∈ τ∗qn or Y ∗
qn ∈ τ∗cqn.

Example 3.1. Let X = {x1, x2}, and τ∗qn = {∅∗qn, X∗
qn, A

∗
qn, B

∗
qn, A

∗
qn ∪ B∗

qn, A
∗
qn ∩ B∗

qn},
where q ≥ 1, A∗

qn = {(x1, 0.4, 0.6, 0.4), (x2, 0.4, 0.5, 0.4)} and
B∗

qn = {(x1, 0.3, 0.4, 0.5), (x2, 0.4, 0.5, 0.5)}. Clearly (X, τ∗qn) is a q∗-RONTS. Let Y =
{x1}. Then X∗

qn |Y = {(x1, 1, 1, 0), (x2, 0, 0, 1)} = Y ∗
qn, ∅∗qn |Y = {(x1, 0, 0, 1), (x2, 0, 0, 1)} =

∅∗qn, A∗
qn |Y = {(x1, 0.4, 0.6, 0.4), (x2, 0, 0, 1)}, B∗

qn |Y = {(x1, 0.3, 0.4, 0.5), (x2, 0, 0, 1)}, A∗
qn∪

B∗
qn |Y = {(x1, 0.4, 0.6, 0.4), (x2, 0, 0, 1)} ,A∗

qn ∩ B∗
qn |Y = {(x1, 0.3, 0.4, 0.5), (x2, 0, 0, 1)}.

Clearly τ∗qn |Y = {∅∗qn, Y ∗
qn, A

∗
qn |Y , B∗

qn |Y , (A∗
qn ∪ B∗

qn) |Y , (A∗
qn ∩ B∗

qn) |Y } is a q∗-RON
subspace of Y , that is (Y, τ∗qn |Y ) is a q∗-RON subspace of (X, τ∗qn).

Proposition 3.4. Let (Y, σ∗
qn) be a subspace of an q∗-RONTS (X, τ∗qn) and (Z, ς∗qn) is a

subspace of (X, τ∗qn).

Proof. Since Z ⊆ Y ⊆ X, so Z ⊆ X. Therefore to prove taht τ∗qn |Z= ς∗qn. Let G
∗
qn ∈ ς∗qn.

Since (Z, ς∗qn) is a subspace of (Y, σ∗
qn), so there exists H∗

qn ∈ σ∗
qn such that G∗

qn = H∗
qn |Z .

Again (Y, σ∗
qn) is a subspace of (X, τ∗qn), so there exists K∗

qn ∈ τ∗qn such taht H∗
qn = K∗

qn |Y .
Then G∗

qn = H∗
qn |Z= (K∗

qn |Y ) |Z= K∗
qn |Z ( by(3.1(iv)). Since K∗

qn |Z∈ τ∗qn |Z , so G∗
qn ∈

τ∗qn |Z . Therfore ς∗qn ⊆ τ∗qn |Z . Next suppose that U∗
qn ∈ τ∗qn |Z . Then there exists V ∗

qn ∈ τ∗qn
such taht U∗

qn ∈ V ∗
qn |Z . Since (Y, σ∗

qn) is a subspace of (X, τ∗qn), so V ∗
qn |Y ∈ σ∗

qn. Again
since (Z, ς∗qn) is a subspace of (Y, σ∗

qn) , so (V ∗
qn |Y ) |Z∈ ς∗qn ⇒ V ∗

qn |Z∈ ς∗qn ⇒ U∗
qn ∈ ς∗qn.

Therefore τ∗qn |Z= ς∗qn. Hence (Z, ς∗qn) is a subspace of (X, τ∗qn). □

Proposition 3.5. Let Y and Z be two subspaces of a q∗-RONTS (X, τ∗qn). If Y ⊆ Z then
Y is a subspace of Z.

Proof. Let (Y, σ∗
qn) and (Z, ς∗qn) be the subspace of the q

∗-RONTS (X, τ∗qn) . Then τ∗qn |Y =
σ∗
qn and τ∗qn |Z= ς∗qn. Now ς∗qn |Y = {A∗

qn |Y : A∗
qn ∈ ς∗qn} = {(B∗

qn |Z) |Y : B∗
qn ∈ τ∗qn and

B∗
qn |Z= A∗

qn ∈ ς∗qn} = τ∗qn |Y = σ∗
qn. Since ς∗qn |Y = σ∗

qn, so Y is a subspace of Z. □

Proposition 3.6. Let (Y, τ∗qn |Y ) be a subspace of a q∗-RONTS (X, τ∗qn) and A∗
qn ∈

N∗
qn(Y ). Then A∗

qn is τ∗qn |Y -closed iff A∗
qn = F ∗

qn |Y for some τ∗qn-closed set F ∗
qn in

X.
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Proof. A∗
qn is τ∗qn |Y -closed in Y ⇐⇒ A∗c

qn is τ∗qn |Y -open in Y ⇐⇒ A∗c
qn = G∗

qn |Y for some
G∗

qn ∈ τ∗qn ⇐⇒ A∗c
qn = (G∗

qn |Y )c ⇐⇒ A∗c
qn = G∗c

qn |Y by (3.1(iii)) ⇐⇒ A∗c
qn = F ∗

qn |Y , where
F ∗
qn = G∗c

qn is a τ∗qn-closed set in X. □

Remark 3.2. From Proposition 3.6, it is easy to conclude that if (Y, τ∗qn |Y ) is a subspace
of a q∗-RONTS (X, τ∗qn) then (τ∗qn |Y )c = τ∗cqn |Y .

Proposition 3.7. Let (Y, τ∗qn |Y ) be a subspace of a q∗-RONTS (X, τ∗qn) and let B∗
qn be a

base for τ∗qn. Then B∗
qn |Y = {V ∗

qn |Y : V ∗
qn ∈ B∗

qn} is a base for τ∗qn |Y .

Proof. Let H∗
qn be a τ∗qn |Y -open set in Y . Also let xµ∗,π∗,ν∗ ∈ H∗

qn be an arbitrary q∗-RON
point. Then there exists a τ∗qn-open set G∗

qn such taht H∗
qn = G∗

qn |Y . Since B∗
qn is a base

for τ∗qn, so there exists a member V ∗
qn |Y of B∗

qn |Y such that xµ∗,π∗,ν∗ ∈ H∗
qn ∈ V ∗

qn |Y ⊆ H∗
qn.

Therefore H∗
qn =

⋃
{V ∗

qn |Y : V ∗
qn |Y ∈ B∗

qn |Y and V ∗
qn |Y ⊆ H∗

qn}. Hence B∗
qn |Y is a base for

τ∗cqn |Y □

4. q∗-rung orthopair neutrosophic nodec space

This section q∗-RON nodec space are introduced and the properties are discussed

Definition 4.1. In a q∗-RONTS (X, τ∗qn), a q∗-RON set A∗
qn is called qq∗-RON nowhere

dense if the interior of its closure is empty. That is intqn(clqn(A
∗
qn)) = ∅qn. This means

that there exists no non-zero q∗-RON open set B∗
qn in (X, τ∗qn) such that B∗

qn ⊆ clqn(A
∗
qn).

The collection of all q∗-RON nowhere dense sets in (X, τ∗qn) is denoted by N∗
qn(Tqn).

Definition 4.2. Let (X, τ∗qn) be the q∗-RONTS and (X, τ∗qn) is said to be q∗-RON door
space, if every q∗-RON subset of X is either q∗-RON open or q∗-RON closed in (X, τ∗qn).

Example 4.1. Consider the Example 2.3 and define a q∗-RON sets A∗
qn and B∗

qn as
follows: A∗

qn = {(aqn, 0.31, 0.31, 0.4), (bqn, 0.31, 0.31, 0.4), (cqn, 0.71, 0.71, 0.21)},
B∗

qn = {(aqn, 0.31, 0.41, 0.41), (bqn, 0.31, 0.41, 0.41), (cqn, 0.71, 0.51, 0.22)}.
Then intqn(clqn(A

∗
qn1

)) = A∗
qn1

, intqn(clqn(A
∗
qn2

)) = A∗
qn2

, intqn(clqn(A
∗
qn)) = ∅qn, and

intqn(clqn(B
∗
qn)) = ∅qn. Therefore A∗

qn1
and A∗

qn2
are not q∗-RON nowhere dense sets.

A∗
qn and B∗

qn are q∗-RON nowhere dense sets.

Definition 4.3. A q∗-RONTS (X, τ∗qn) is termed a q∗-RON submaximal space if, for every
q∗-RONS A∗

qn in (X, τ∗qn) such that clqn(A
∗
qn) = 1, it follows that A∗

qn ∈ τ∗qn. That is q∗-
RON submaximal space if each q∗-RON dense set in (X, τ∗qn) is a q∗-RONTS open set in
(X, τ∗qn).

Definition 4.4. Let (X, τ∗qn) be q∗-RONTS. The space (X, τ∗qn) is called q∗-RON nodec
space if every q∗-RON nowhere dense set is closed.

Example 4.2. Let X = {aqn, bqn, cqn} for all k ∈ {1, 2, 3} , Aqnk
be a q-RONS:

Aqn1 = {(aqn, 0.7, 0.5, 0.1), (bqn, 0.5, 0.5, 0.3), (cqn, 0.4, 0.6, 0.4)},
Aqn2 = {(aqn, 0.6, 0.5, 0.7), (bqn, 0.3, 0.4, 0.5), (cqn, 0.3, 0.2, 0.8)}
Aqn3 = {(aqn, 0.7, 0.5, 0.6), (bqn, 0.5, 0.5, 0.4), (cqn, 0.4, 0.2, 0.4)},
where for all x ∈ X , 0 ≤ µq

Aqnk
(xqn) + νqAqnk

(xqn) ≤ 1, q ≥ 1 and

0 ≤ µq
Aqnk

(xqn) + πq
Aqnk

(xqn) + νqAqnk
(xqn) ≤ 2 .

Then A∗
qn1

= {(aqn, 0.5, 0.3, 0.1), (bqn, 0.5, 0.5, 0.3), (cqn, 0.4, 0.6, 0.4)},
A∗

qn2
= {(aqn, 0.3, 0.3, 0.4), (bqn, 0.3, 0.4, 0.5), (cqn, 0.2, 0.2, 0.7)}

A∗
qn3

= {(aqn, 0.4, 0.3, 0.3), (bqn, 0.5, 0.5, 0.4), (cqn, 0.4, 0.2, 0.4)},
Clearly τ∗qn = {∅∗qn, X∗

qn, A
∗
qn1

, A∗
qn2

, A∗
qn3

} is a q∗-RONT. Now, define a q∗-RON set A∗
qn
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as follows: A∗
qn = {(aqn, 0.305, 0.4, 0.091), (bqn, 0.202, 0.6, 0.20), (cqn, 0.101, 0.701, 0.302)}.

Then cl(A∗
qn) = {(aqn, 0.305, 0.4, 0.091), (bqn, 0.202, 0.6, 0.20), (cqn, 0.101, 0.701, 0.302)} and

intqn(clqn(A
∗
qn)) = ∅qn. Therefore, A∗

qn is q∗-RON nowhere dense set.
Since clqn(A

∗
qn) = A∗

qn, the nowhere dense set A∗
qn is closed.

Hence, the space (Xqn, τ
∗
qn) is called the q∗-RON nodec space.

Theorem 4.1. For a q∗-RONTS (X, τ∗qn), the following conditions are equivalent:

(i) (X, τ∗qn) is a q∗-RON nodec space.
(ii) Every q∗-RON nowhere dense subset of (X, τ∗qn) is both q∗-RON closed and q∗-RON

discrete.
(iii) Every q∗-RON subset of (X, τ∗qn) containing a q∗-RON dense open set is q∗-RON

open.

Proof. (i) =⇒ (ii) Assume that (X, τ∗qn) is a q∗-RON nodec space. Let A∗
qn be a q∗-RON

nowhere dense subset of (X, τ∗qn). By definition 4.1 intqn(clqn(A
∗
qn)) = ∅qn. Hence, A∗

qn

is q∗-RON closed. (ii) =⇒ (iii) Now, Assume Every q∗-RON nowhere dense subset of
(X, τ∗qn) is both q∗-RON closed and q∗-RON discrete. Let B∗

qn be a q∗-RON subset of
(X, τ∗qn) containing a q∗-RON dense open set O∗

qn. Since O∗
qn = intqn(O

∗
qn) ⊆ intqn(B

∗
qn).

Therfore, B∗
qn must itself be open,because any set containing a dense subset cannot be

a closed, nowhere dense set. Thus B is q∗-RON open. (iii) =⇒ (i) Assume that every
q∗-RON subset of (X, τ∗qn) containing a q∗-RON dense open set is q∗-RON open. Let
C∗
qn be a q∗-RON nowhere dense subset of (X, τ∗qn). Then, intqn(clqn(C

∗
qn)) = ∅ implies

(X, τ∗qn)−intqn(clqn(C
∗
qn)) = (X, τ∗qn) implies clqn[(X, τ∗qn)−clqn(C

∗
qn)] = (Xqn, τ

∗
qn) implies

clqn[intqn((Xqn, τ
∗
qn) − B∗

qn)] = (X, τ∗qn). This means that intqn((X, τ∗qn) − B∗
qn) is a q∗-

RON dense open set, and intqn((X, τ∗qn)−C∗
qn) ⊆ (X, τ∗qn)−C∗

qn. Hence ,(X, τ∗qn)−C∗
qn is

q∗-RON open. Thus C∗
qn is q∗-RON closed. Therefore (X, τ∗qn) is q

∗-RON nodec space.
□

Theorem 4.2. For a q∗-RONTS (X, τ∗qn), the following conditions are equivalent:

(i) (X, τ∗qn) is a q∗-RON nodec space.
(ii) clqn(A

∗
qn) = A∗

qn

⋃
clqn(intqn(clqn(A

∗
qn))) for each A∗

qn ⊆ (X, τ∗qn).

Proof. (i) =⇒ (ii) Let (X, τ∗qn) be a q∗-RON nodec space and A∗
qn ⊆ (X, τ∗qn). Therefore,

clqn(A
∗
qn) = A∗

qn

⋃
clqn(intqn(clqn(A

∗
qn))). (ii) =⇒ (i) IfA∗

qn ⊆ (X, τ∗qn) is q
∗-RON nowhere

dense, then clqn(A
∗
qn) = A∗

qn

⋃
clqn(intqn(clqn(A

∗
qn))) = A∗

qn

⋃
∅ = A∗

qn. Therefore, A∗
qn is

closed. Thus (X, τ∗qn) is a q∗-RON nodec space. □

Theorem 4.3. For a q∗-RON topological space (X, τ∗qn), the following conditions are equiv-
alent:

(i) (X, τ∗qn) is a q∗-RON nodec space.
(ii) For every A∗

qn ⊆ (X, τ∗qn), if clqn(intqn(clqn(A
∗
qn))) ⊆ A∗

qn, then B∗
qn is a q∗-RON

closed.
(iii) intqn(A

∗
qn) = A∗

qn

⋂
intqn(clqn(intqn(A

∗
qn))) for every A∗

qn ⊆ (X, τ∗qn).

Proof. (i) =⇒ (ii) Let (X, τ∗qn) be a q∗-RON nodec space. In a q∗-RON nodec space, no
dense set exists that is not open. Now, consider a setA∗

qn such that clqn(intqn(clqn(A
∗
qn))) ⊆

A∗
qn implies clqn(intqn(clqn(A

∗
qn))) ⊆ A∗

qn implies A∗
qn is closed set . Thus, A∗

qn is q∗-RON
closed. (ii) =⇒ (iii) Assume that for every A∗

qn ⊆ (X, τ∗qn), if clqn(intqn(clqn(A
∗
qn))) ⊆ A∗

qn,
then B∗

qn is a q∗-RON closed. To prove intqn(A
∗
qn) = A∗

qn

⋂
intqn(clqn(intqn(A

∗
qn))) for ev-

ery A∗
qn ⊆ (X, τ∗qn). Let A∗

qn ⊆ (X, τ∗qn) and we know that clqn(intqn(A
∗
qn)) ⊆ intqn(A

∗
qn)

implies intqn(A
∗
qn) = A∗

qn

⋂
intqn(clqn(intqn(A

∗
qn))). (iii) =⇒ (i) Let A∗

qn ⊆ (X, τ∗qn) be
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a q∗-RON nowhere dense set. Since intqn(A
∗
qn) = A∗

qn

⋂
intqn(clqn(intqn(A

∗
qn))), then

intqn((A
∗
qn)

c) = (A∗
qn)

c
⋂
intqn(clqn(intqn((A

∗
qn)

c))), and is equivalent to clqn(A
∗
qn) =

A∗
qn

⋃
clqn(intqn(clqn(A

∗
qn))). Hence clqn(A

∗
qn) = A∗

qn

⋃
clqn(intqn(clqn(A

∗
qn))) = A∗

qn

⋃
∅qn

= A∗
qn. Therefore, A

∗
qn is q∗-RON closed. Thus (X, τ∗qn) is a q∗-RON nodec space. □

Definition 4.5. A q∗-RONTS (X, τ∗qn) is called q∗-RON submaximal if every q∗-RON
dense subset of (X, τ∗qn) is q∗-RON open.

Theorem 4.4. Every q∗-RON submaximal space is q∗-RON nodec space.

Proof. Let (X, τ∗qn) be a q∗-RON submaximal space. Let A∗
qn ∈ N∗

qn(Tqn). If Aqn is q∗-
RON closed then q∗-RON nodec space.
Suppose that A∗

qn is not q∗-RON closed. Then, Aqn
∗c is not q∗-RON open and, by q∗-RON

submaximality of (X, τ∗qn), Aqn
∗c is not q∗-RON dense in (X, τ∗qn). Therefore clqn(A

∗
qn)

c ̸=
X. This implies that there exists xqn ∈ P ∗

qn such that xqn < cl(A∗c) ; moreover, there
exists a q∗-RON open set B∗

qn that contains xqn and B∗
qn

⋂
(Aqn)

∗c = ∅. Hence B∗
qn ⊆ A∗

qn,
which means intqn(A

∗
qn) ̸= ∅. This contradicts the assumption that A∗

qn ∈ N∗
qn(Tqn).

Thus, A∗
qn must be q∗-RON closed. Therefore, (X, τ∗qn) is q

∗-RON nodec space. □

Remark 4.1. Example 4.3 demonstrates that the converse of the Theorem 4.4 need not
be true.

Example 4.3. Let X = {aqn} and Aqn = {aqn1 , aqn2}. Consider the q∗-RON indiscrete
topology τ∗qn = {Xqn, ∅qn} on X. Clearly (X, τ∗qn) is a q∗-RON nodec space, but not q∗-RON
submaximal.

Definition 4.6. A q∗-RONTS (X, τ∗qn) is called q∗-RON door if every q∗-RON subset of
(X, τ∗qn) is either q∗-RON open or q∗-RON closed.

Remark 4.2. q∗-RON door space =⇒ q∗-RON submaximal space =⇒ q∗-RON nodec
space.

Definition 4.7. A q∗-RONTS (X, τ∗qn) is called strongly q∗-RON nodec if each q∗-RON
nowhere dense set A∗

qn ⊆ (X, τ∗qn) is finite and q∗-RON closed.

Theorem 4.5. Let fqn : (X, τ∗qn) −→ (Y, τ∗qn) be a continuous function between two q∗-
RON nodec spaces. If Aqn ⊆ X is q∗-RON nowhere dense, then fqn(A

∗
qn) is q∗-RON

nowhere dense in Y .

Proof. Let fqn : (X, τ∗qn) −→ (Y, τ∗qn) be a continuous function between two q∗-RON
nodec spaces. Therefore intqn(clqn(A

∗
qn)) = ∅∗qn. Since fqn is continuous , the im-

age of the closure of A∗
qn. That is fqn(clqn(A

∗
qn)) ⊆ clqn(fqn(A

∗
qn)). Thus, we have

intqn(fqn(clqn(A
∗
qn))) ⊆ intqn(clqn(fqn(A

∗
qn))). Since A∗

qn is q∗-RON nowhere dense in X.
Therefore intqn(clqn(A

∗
qn)) = ∅ =⇒ intqn(fqn(clqn(A

∗
qn))) = ∅∗qn =⇒ intqn(clqn(fqn(A

∗
qn)))

= ∅∗qn =⇒ fqn(A
∗
qn) is q

∗-RON nowhere dense in Y . □

Theorem 4.6. For a continuous function fqn : (X, τ∗qn) −→ (Y, τ∗qn), if A
∗
qn is a q∗-RON

dense set in Y , then the preimage f−1(A∗
qn)is also q∗-RON dense in X.

Proof. Let fqn : (X, τ∗qn) −→ (Y, τ∗qn) be a continuous function between two q∗-RON nodec
spaces. Since A∗

qn ⊆ Y then clqn(A
∗
qn) = Y . Since fqn is continuous, for any subset

A∗
qn ⊆ Y , therefore f−1

qn (clqn(A
∗
qn)) = clqn(f

−1
qn (A∗

qn))impliesf−1
qn (Yqn) = clqn(f

−1
qn (A∗

qn))

implies X = clqn(f
−1
qn (A∗

qn)). Therefore f−1
qn (A) also q∗-RON dense in X. □
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Theorem 4.7. If f : (X, τ∗qn) −→ (Y, τ∗qn) is a surjective continuous function and (Xqn, τ
∗
qn)

is a q∗-RON nodec space, then (Y, τ∗qn) is also a q∗-RON nodec space.

Proof. Let f : (X, τ∗qn) −→ (Y, τ∗qn) be a continuous and surjective function between two
q∗-RONTS, and assume that (X, τ∗qn) is a q∗-RON nodec space. Therfore X is both q∗-
RON closed and q∗-RON discrete. Let A∗

qn ⊆ Y be a q∗-RON nowhere dense set in Y ,
therefore intqn(clqn(A

∗
qn)) = ∅∗qn. Since fqn is surjective, for any set A∗

qn ⊆ Yqn, therefore

f−1
qn (A∗

qn) ⊆ X. Since fqn is continuous,therefore f−1
qn (A∗

qn) is a q∗-RON nowhere dense
set in X. Since (X, τ∗qn) is q∗-RON nodec space, therefore every q∗-RON nowhere dense

set in X is q∗-RON closed and q∗-RON discrete. Thus f−1
qn (A∗

qn) is both q∗-RON closed

and q∗-RON discrete. Since fqn is surjective , therefore A∗
qn = fqn(f

−1
qn (A∗

qn)) implies
A∗

qn is both q∗-RON closed and q∗-RON discrete in Y . Thus (Y, τ∗qn) is a q∗-RON nodec
space. □

Theorem 4.8. If A∗
qn is q∗-RON dense in Y , then f−1

qn (A∗
qn) is q∗-RON dense in X.

Proof. Let A∗
qn ⊆ Y be a q∗-RON dense set in Y , therefore clqn(A

∗
qn) = Y . To prove that

clqn(f
−1
qn (A∗

qn)) = X. Since fqn is continuous function, therefore f−1
qn (clqn(A

∗
qn)) is closed

in X. Since A∗
qn is q∗-RON dense in Y , therefore f−1(cl(A∗

qn)) = f−1(Y ) = X implies

clqn(f
−1
qn (A∗

qn)) = X implies f−1
qn (A∗

qn) is q
∗-RON dense in X. □

5. Conclusions and Future Work

This paper extends standard topological structures to account for indeterminacy and
uncertainty by introducing and exploring the notion of q∗-rung orthopair neutrosophic
subspaces and nodec spaces. Important features are established, such as the fact that
any nowhere dense subset in such spaces is closed, which is consistent with but extends
conventional topological conclusions via the parameter q. The work mostly concentrated
on theoretical features and particular specifics of q∗-RON spaces, even with its positive
outcomes. There are several real-time applications of q∗-RONT spaces in fields such as im-
age processing, decision-making, and data analysis. In decision-making, these spaces can
effectively handle vague or imprecise information, making them suitable for multi-criteria
decision-making frameworks. They have the potential to address complex problems, such
as evaluating medical risk conditions. Such applications represent a valuable direction for
future research involving q∗-RONT spaces.
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