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WEAKER FORMS OF OPEN SETS IN PYTHAGOREAN FUZZY
NANO TOPOLOGICAL SPACES AND ITS APPLICATION USING
ENTROPY MEASURE

P. DEIVANAYAGI!, S. TAMILSELVAN?, A. VADIVEL?*, §

ABSTRACT. In this paper, we introduce a Pythagorean Fuzzy nano M-open set which is
the union of Pythagorean Fuzzy nano §P-open sets and Pythagorean Fuzzy nano 6S-open
sets in Pythagorean Fuzzy nano topological spaces. Also, we discuss about near open
sets, their properties and examples of a Pythagorean Fuzzy nano M-open set. Moreover,
we investigate some of their basic properties and examples of Pythagorean Fuzzy nano
M-interior and M-closure in a Pythagorean Fuzzy nano topological spaces. One real life
applications, one on better way of shopping, based on this proposed entropy measure are
also illustrated.

Keywords: Pythagorean Fuzzy nano M-open sets, Pythagorean Fuzzy nano M-closed
sets, Pythagorean Fuzzy nano M-int(A) and Pythagorean Fuzzy nano M-cl(A), Pythagorean
Fuzzy Entropy.
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1. INTRODUCTION

Zadeh [27] generalized the usual set by using fuzzy set in which every detail is described
with a degree of membership function. The fuzzy set has many programs in economic
system, decision making, facts mining, commercial enterprise and many others. Fuzzy
set has been generalized to greater non-standard fuzzy subsets. As Intuitionistic fuzzy
subset become introduced with the aid of Atanassov [3], in which every element had the
degree of membership and the degree of non- membership. Yager [24, 25, 26] presented
the perception of Pythagorean fuzzy subset that is a typical fuzzy subsets and which has
many powerful applications in natural and social sciences. Pythagorean fuzzy subsets
can be used appropriately on every instant where intuitionistic fuzzy subsets cannot be
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used. Standard topology has been stepped forward by means of taking its motivation from
classical analysis and applied on several sections of research inclusive of system getting
to know, statistics evaluation, facts mining. Farther the scrutiny of topology refers the
relationship between spatial gadgets and features and it may be used to explain some sure
spatial functions and to conceive statistics units which have higher great control and extra
statistics integrity. In 1968, Chang [7] described the theory of fuzzy topological space and
generalized some fundamental idea of topology inclusive of open set, closed set, continuity
and compactness. Following this observation, Lowen gave a different explanation of a
fuzzy topological space by way of converting a primary property of topology [13]. In
1995, Coker delivered the notion of intuitionistic fuzzy topological space and studied some
equivalent variations of some standards of classical topology together with continuity and
compactness [8]. Furthermore, some authors studied the concept of fuzzy soft topological
space and its packages in choice-making environment.

Pawlak [16] introduced Rough set theory by handling vagueness and uncertainty. This
can be often defined by means of topological operations, interior and closure, called ap-
proximations. In 2013, Lellis Thivagar [11] introduced an extension of rough set theory
called Nano topology and defined its topological spaces in terms of approximations and
boundary region of a subset of a universe using an equivalence relation on it.

S. Saha [17] defined J-open sets in fuzzy topological spaces, nano topological space by
Pankajam et al. [15] and neutrosophic topological space by Vadivel et al. [21]. Recently,
Lellis Thivagar et.al [12] explored a new concept of neutrosophic nano topology, intuition-
istic nano topology and fuzzy nano topology. El-Maghrabi and Al-Juhani [9] proposed
the concept of M-open sets in topological spaces in 2011 and examined some of their
features. Padma et al. [14] also found M-open sets in nano topological spaces. Vadivel et
al. [19, 20, 22| discussed some open sets in fuzzy nano and neutrosophic nano topological
spaces. Kalaiyarsan et al. [10] and Vadivel et al. [23] introduced M-open sets in fuzzy
and neutrosophic nano topological spaces.

The remainder of this paper is organized as follows. In section 2, some basic definitions
of fs’s, IFS’s and PFs’s are briefly reviewed. In section 3, We develop the concept of
some stronger and weaker forms of Pythagorean fuzzy nano open sets in Pythagorean fuzzy
nano topological space and also specialized some of their basic properties with examples.
Finally, we presented an entropy measure for PF91s’s and one real- world scenarios where
this entropy measure can be used are mentioned in section 4. The paper is concluded in
section 5.

2. PRELIMINARIES
We recall some basic notions of fuzzy sets, I F'S’s and PFMNs’s .

Definition 2.1. [27] Let U be a nonempty set. A fuzzy set A in U is characterized by a
membership function 4 : X — [0, 1]. That is:
1, if reX
palz) =40, if r¢ X
(0,1) if x is partly in X.
Alternatively, a fuzzy set A in U is an object having the form A = {< z, pa(z) > |z €
X}or A= {<“AT($)> |z € X} , where the function pa(z) : X — [0,1] defines the degree

of membership of the element, z € X.
The closer the membership value p4(z) to 1, the more x belongs to A, where the grades
1 and 0 represent full membership and full nonmembership. Fuzzy set is a collection of



P. DEIVANAYAGI et al.: WEAKER FORMS OF OPEN SETS IN ... 283

objects with graded membership, that is, having degree of membership. Fuzzy set is an
extension of the classical notion of set. In classical set theory, the membership of elements
in a set is assessed in a binary terms according to a bivalent condition; an element either
belongs or does not belong to the set. Classical bivalent sets are in fuzzy set theory called
crisp sets. Fuzzy sets are generalized classical sets, since the indicator function of classical
sets is special cases of the membership functions of fuzzy sets, if the latter only take values
0 or 1. Fuzzy sets theory permits the gradual assessment of the membership of element
in a set; this is described with the aid of a membership function valued in the real unit
interval [0, 1].

Let us consider two examples:

(i) all employees of XY Z who are over 1.8m in height; (ii) all employees of XY Z
who are tall. The first example is a classical set with a universe (all XY Z employees)
and a membership rule that divides the universe into members (those over 1.8m) and
nonmembers. The second example is a fuzzy set, because some employees are definitely
in the set and some are definitely not in the set, but some are borderline.

This distinction between the ins, the outs, and the borderline is made more exact by the
membership function, p. If we return to our second example and let A represent the fuzzy
set of all tall employees and x represent a member of the universe U (i.e. all employees),
then pa(x) would be pa(z) = 1if x is definitely tall or pa(x) = 0 if x is definitely not tall
or 0 < pa(x) <1 for borderline cases.

Definition 2.2. [3, 4, 5, 6] Let a nonempty set U be fixed. An IF'S A in U is an object
having the form: A = {< x,pa(x),\a(x) > |z € X} or A = {<W> |z € X},
where the functions pa(z) : X — [0,1] and Aa(z) : X — [0,1] define the degree of
membership and the degree of nonmembership, respectively, of the element x € X to A,
which is a subset of X, and for every x € X : 0 < pa(z) + Aa(x) < 1. For each A in U:
ma(x) =1 — pa(x) — Aa(x) is the intuitionistic fuzzy set index or hesitation margin of x
in X. The hesitation margin 74 () is the degree of nondeterminacy of = € X to the set A
and 74 (z) € [0,1]. The hesitation margin is the function that expresses lack of knowledge
of whether x € X or x ¢ X. Thus: pa(z) + Aa(x) + ma(x) = 1.

Example 2.1. Let X = {z,y, 2} be a fixed universe of discourse and A = {<70'63’CO'1>,

<0'8§0'1>, <0'5;0'3>}, be the intuitionistic fuzzy set in U. The hesitation margins of the

elements x,y, z to A are as follows: m4(z) = 0.3, ma(y) = 0.1 and m4(z) = 0.2.

Definition 2.3. [24, 25, 26] Let U be a universal set. Then, a Pythagorean fuzzy
set A, which is a set of ordered pairs over U, is defined by the following: A = {<

z,ua(z), Aa(z)|lzr € X} or A = {<M> |z € X}, where the functions p4(x) :

X — [0,1] and Ag(x) : X — [0, 1] define the degree of membership and the degree of non-
membership, respectively, of the element x € X to A, which is a subset of U, and for every
r€X,0< (pa(x)? + (Aa(z))? < 1. Supposing (pa(z))? + (Aa(z))? < 1, then there is
a degree of indeterminacy of x € X to A defined by ma(z) = /1 — [(pa(®))2 + (Aa(z))?]
and ma(x) € [0,1]. In what follows, (pa(x))? + (Aa(z))? + (7a(2))? = 1. Otherwise,
7a(z) = 0 whenever (ua())? + (Aa(z))? = 1. We denote the set of all Pythagorean fuzzy
sets over U by pfs’s.

Definition 2.4. [26] Let A and B be pfs’s of the forms A = {< a, pa(a), Aa(a) > |a € X}
and B = {< a,up(a),\p(a) > |a € X}. Then
(i) AC B ifand only if pa(a) < pp(a) and Ag(a) > Ap(a) for all a € X.
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ii) A= B ifand only if A C B and B C A.

iii) A={<a, a(a),pala) > |ac X}.

(1V§ ANB= {< a ,uA( )/\uB(a),)\A(a)v)\B(a) > la € X}.
i)

(vii) 1p =0p and Op = 1p.

Definition 2.5. [1] Let U be a non-empty set and R be an equivalence relation on U. Let A
be a Pythagorean fuzzy set in U with the membership function p4(z) and non membership
function Ag(z), V € U. The Pythagorean fuzzy nano lower, Pythagorean fuzzy nano
upper approximation and Pythagorean fuzzy nano boundary of A in the approximation
(U, R) denoted by PFN (A),PFN(A) and Bprn(A) are respectively defined as follows:

() PEN(4) = { (@, (@) Ay (@)} /y € [alm,w € U |

(i) PFN(F) = { (@, iga) (@), Arcay (@))/y € ol € U}
(iit) Bprn(F) = PFN(F) — PEN(F)

where ppa)(2) = Ayepa), Ha(y)

Ar(4) (@) = Ayepa, Aa(y),

ME(A)< r) = \/ye[z]R pa(y),

M) (@) = Vyefag A ()-
Definition 2.6. [1] Let U be an universe of discourse, R be an equivalence relation on U
and A be a Pythagorean fuzzy set in U and if the collection 7 (A) = {0p, 1p, PFN(A),
PFN(A), Bpra(A)} forms a topology then it is said to be a Pythagorean fuzzy nano
topology. We call (U, 7r(A)) (or simply U) as the Pythagorean fuzzy nano topological

space. The elements of 7z (A) are called Pythagorean fuzzy nano open (briefly, PFNo)
sets.

Remark 2.1. [1] [7r(A)]¢ is called the dual fuzzy nano topology of 7z (A). Elements of
[Tr(A)]¢ are called Pythagorean fuzzy nano closed (briefly, PFN¢) sets. Thus, we note
that a Pythagorean fuzzy set G of U is Pythagorean fuzzy nano closed in 7 (A) if and
only if 1p — G is Pythagorean fuzzy nano open in 7 (A).

Definition 2.7. [1, 2] Let (U,mr(A)) be a PFNts with respect to A where A is a
Pythagorean fuzzy subset of U. Let S be a Pythagorean fuzzy subset of U. Then
Pythagorean fuzzy nano
(i) interior of S (briefly, PFNint(S)) is defined by PFNint(S) =U{I: I C S& Iisa
PFNo set in U}.
(ii) closure of S (briefly, PFN¢cl(S)) is defined by PFNcl(S)=nN{A: SC A& Aisa
PFNec setin U}.
(iii) regular open (briefly, PFANro) set if S = PFNint(PFNcl(S)).
(iv) regular closed (briefly, PFNrc) set if S = PFNcl(PFNint(S)).

3. PYTHAGOREAN FUZZY NANO M-OPEN SETS

Definition 3.1. Let (U,7r(A)) be an PFMNts and S = {< s, us(s),As(s) > |s € U} be
an PFs in U. Then the PFNd-interior and the PFNI-closure of S are denoted by
PFNoint(S) and PFNIcl(S) and are defined as follows. PFNdint(S) = U{G|G is an
PFMNros and G C S}, PFNIcl(S) = N{K|K is an PFNres and S C K}.

Definition 3.2. Let (U,7r(A)) be a PFMNts and S = {< s, us(s), As(s) > |s € U} be an
PFNs in U. A set S is said to be PFN
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i) d-open set (briefly, PFNdos) if S = PFNdint(S),

(ii) o-pre open set (briefly, PFNIPos) if S C PFNint(PFNocl(S)).

(iii) d-semi open set (briefly, PFNdSos) if S C PFNcl(PFNoint(S)).

(iv) e open set (briefly, PFMNeos ) if S C PFNcl(PFNoint(S)) UPFNint(PFNIcl(S)).
(v) ¢ (resp. d-pre, 6-semi and e) dense if PFNocl(S) (resp. PFNOPcl(S), PFNOScl(S)
and PFNecl(S)) = 1p.

The complement of an PFNdos (resp. PFNIPos, PFNISos and PFNeos) is called
an PFNO (resp. PFNOP, PFN IS and PFMNe) closed set (briefly, PFNdcs (resp.
PFNIPcs, PFNIScs and PFNecs)) in U.

The family of all PFNdos (resp. PFNIcs, PFNIPos, PFNIPcs, PFNISos, PFNI
Scs, PFNeos and PFMNecs) of U is denoted by PFNIOS(U), (resp. PFNICS(U), PFN
OPOSU), PFNSPCS(U), PFNOSOS(U), PFNISCS(U), PFNeOS(U) and PFNeCS

(U))-
Example 3.1. Assume U = {s1, $2, $3, 54} be the universe set and the equivalence relation

is U/R = {{s1, s}, {s2}, {s3}}. Let A = {<0.65,10A4> , <0.4f,20.8> ) <0.5?3.75> , <0.7?61.55>} be a

Pythagorean fuzzy subset of U.
51,54 52 S3
0.6,0.55/°\0.4,0.8/°\0.5,0.75/ [’
Sla S4 59 S3
PFR(A {<07 04> <0.4,0.8>’<0.5,0.75>}’
B S1, 54 52 53
Prn(4 0.55,0.6/°\0.4,0.8/7\0.5,075/ |
N

Thus 7'73( ) = {07), 173,77 ( PFm(A),Bp]:m(A)} Then
{(Gaa5) (5i3s) - (55w ) | is @ PFNo (resp. PFNGPo, PFNISo, PFNs0, PF
MNoSo and PFNeo ) set.

Definition 3.3. Let (U,7r(A)) be an PFMNts and S = {< s, us(s),As(s) > |s € U} be
an PFNs in U. Then the PFMNo-pre (resp. PFNd-semi and PFNIS)-interior and the
PFNo-pre (resp. PFNd-semi and PFNe)-closure of S are denoted by PFNOPint(S)
(resp. PFNOSint(S) and PFMNeint(S)) and the PFNecl(S) (resp. PFNIScl(S) and
PFNecl(S)) and are defined as follows:

PFNOIPint(S) (resp. PFNISint(S) and PFNeint(S)) = U{G|G is a PFNIPos (resp.
PFNoSos and PFNeos)

and G C S} and PFNIPcl(S) (resp. PFNIScl(S) and PFNecl(S)) = N{K|K is an
PFNIPcs (resp. PFNIScs and PFNecs) and S C K}.

Example 3.2. In Example 3.1, (1) me5plnt(3pfm(A)) = Bp]:m(A) () PFNSS
int(Bprm(A)) = Bpro(A), (iii) PFNSBint(Bprn(A)) = Bprn(A), (iv) PFNeint(Bprn
(4)) = Bprn(A),

(V) PFRGPel((Bpro(A))) = (Bprn(A))©, (vi) PFNOScl((Bprn(A))°) = (Bpra(A))*,
(vii) PFNSBel((Bprm(A))©) = (Bprm(A))©, (vil)) PFNeint((Bprm(A))°) = (Bpra(4))*,
Definition 3.4. Let (U,7r(A)) be a PFIts and S be a PFNs in U. A set S is said to
be PFN

(i) @-interior of S (briefly, PFNOint(S)) is defined by PFNOint(S) = [J{PFMNint(T) :

TCS&TisaPFNesin U}.
(ii) #-open set (briefly, PFNOos) if S = PFNOint(S).

v

PFN(A {
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(iii) 0 -semi open set (briefly, PFNOSos) if S C PFNcl(PFNbint(S)).
(iv) M-open set (briefly, PFNMos) if S C PFNcl(PFNOint(S)) U PFNint(PFNdcl
(5))-

The complement of a PFINMos (resp. PFNbos & PFNOSos) is called an PFNM
(resp. PFNO & PFNHS) closed set (briefly, PFNMecs (resp. PFNbes & PFNOScs)) in
U.

The family of all PFNbos (resp. PFNbcs, PFNOSos, PFNOScs, PFNMos and PF
MMcs) of U is denoted by PFNIOS(U) (resp. PFNICS(U), PFNISOS(U), PFNIS
CSU), PFR MOS(U) and PFNRMCS(U)).

Example 3.3. Assume U = {sy, s2, 83, sS4} be the universe set and the equivalence relation

is U/R = {{s1,s4},{s2}, {s3}}. Let A = { 0804> <0606> <0.$,?6.7>’<0.§,%.7>} be a

Pythagorean fuzzy subset of U.
51,54 83
N(A
e {<0.5,0.7 <06,06> <07,0.7>}’
53
0. 6 0 6 0.7,0.7 ’

)
= {{saes):
{<08;7345> <06 06> <07530 7>}

Thus TR(A) = {07), 173, ‘ﬁ PFW(A) Bp]:{n( )} Then

{<Oség47> , <0.65720.6> <0 o 7>} is a PFNbo (resp. PFINOSo and PFNMo ) set;
PFNYint(Bprm(A)) = Brrn(A

Definition 3.5. Let (U, TR(A)) be a PFMNts and S be a PFNs in U. Then the PFN

(i) M-interior (resp. PFNO-interior and PFINF-semi interior) of S (briefly, PFNMint
(S) (resp. PFNOint(S), PFNO Sint(S)) is defined by PFNMint(S) (resp. PFN
Gint(S) and PFNOSint(S)) = U{T : T C Sand T isa PFNMos (resp. PFNOos and
PFNOS os)} in U.

(ii) M-closure (resp. 6-closure and #-semi closure) of S (briefly, PFNMcl(S) (resp.
PFNROL(S) & PFNOScl(S)) is defined by PFNMcl(S) (resp. PFNOcl(S) and
PFNROScL(S)) =n{T:S CTand T isa PFNMcs (resp. PFNOcs and PFNOScs)}
inU.

Example 3.4. In Example 3.3, (i) PFNOint(Bprn(A)) = Bprn(A4),

(11) 'P}-mGSZTLt(BP}'m(A)) = Bp]:sn(A), (111) meMZnt(BP}‘m(A)) Bp}'m(A), (lV)
PFNGCl((Bprn(A))) = (Borm(A)F, (v) PFRESint((Bpra(A))) = (Bpra(A)), (vil)
PFNRMint((Bprn(A))°) = (Bprn(A))S,

Proposition 3.1. Let (U,7r(A)) be a PFMNts. Then the following statements are hold
but the converse does not true.

(i) Every PFNbos (resp. PFNOcs) is a PFNos (resp. PFNcs).

(ii) Every PFNOos (resp. PFNbcs) is a PFNOSos (resp. PFNOScs).

(iii) Every PFNOSos (resp. PFNOScs) is a PFNMos (resp. PFNMecs).

(iv) Every PFNdos (resp. PFNdcs) is a PFNISos (resp. PFNIScs).

(v)
i)
i)
)

PFN(A

Bpran(A

v) Every PFNdos (resp. PFNdcs) is a PFNIPos (resp. PFNIPcs).
(vi) Every PFNISos (resp. PFNIScs) is a PFNeos (resp. PFNecs).
(vii) Every PFINIPos (resp. PFNIPcs) is a PFNMos (resp. PFNMcs).

(viii) Every PFMMos (resp. PFNMes) is a PFNeos (resp. PFNecs).
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Proof.

(i) If S is a PFNbos in U, then S = PFNOint(S) C PFNint(S). Therefore, S is a
PFNos.

(i) If S'is a PFMNOos in U, then S = PFNGint(S). So, S = PFNint(S) C PFNcl(PF
MNOint(S)). Therefore, S is a PFNOSos.

(iii) If Sis a PFNOSos in U, then S C PFNcl(PFNOint(S)). So, S C PFNcl(PFNOint
(9)) C Pf‘ﬁcl(P]-"‘ﬁ@mt(S)) U PFNint(PFNGcl(S)). Therefore, S is a PFNMos.

(iv) If S'is a PFNdos in U, then S = PFNIint(S). So, S = PFNIint(S) C PFNcl(PF
MNoint(S)). Therefore, S is a PFINISos.

(v) If Sis a PFNdos in U, then S = PFNIint(S). So, S = PFNGint(S) C PFMNint(S)
C PFNint(PFNcl(S)). Therefore, S is a PFNIPos.

(vi) If S is a PFNOSos in U, then S C PFNcl(PFNIint(S)) C PFNcl((PFNint(S)))
UPFNint(PFNocl(S)). Therefore, S is a PFNeos.

(vii) If S is a PFIOPos in U, then S C PFNint(PFNocl(S)) C PFNcl(PFNOint(S))
UPFNint(PFNocl(S)). Therefore, S is a PFNMos.

(viii) If S'is a PFNMos then S C PFNcl(PFNOint(S)) UPFNint(PFNocl(S)). So, S C
PFNA(PFNMint(S)) U PFNint(PFNScl(S)) € PFNint(PFNOcl(S) T PFMNel
(PFNG int(S)) U PFNint(PFNIcl(S))). Therefore S is a PFNeos. It is also true
for their respective closed sets.

Example 3.5. Assume U = {s1, $2, $3, 84} be the universe set and the equivalence relation

is U/R = {{s1,s4},{s2}, {ss}}. Let A= {<o.§,1o.1> ) <o.f,2().5> , <o.2f3.45> ) <0.4f61.25>} be a

Pythagorean fuzzy subset of U.

51784 59 S3
FN(A
2EN {<03 025> <0.1,0.5>’<0.2,o.45>}’
51,54 52 53
PFR(A {<04 01> <o.1,o.5>’<o.2,0.45>}’
B S1,54 52 S3
pro(4 0.25,0.3/°\0.1,0.5/°\0.2,0.45/

Thus 7R (A) = {0p, 1p, PFN(A), PFN(A), Bprn(A)}. Then
(i) {<0228‘.*1> , <0.1,0.5> , <o.2,045>} is a PFNo (resp. PFNIPo, PFNeo and PFNeo )
set but not PFNdo (resp. PFNJo, PFNMo and PFNISo) set.
() {(s3535) - (5i37) » (5igm ) | 15 & PFNGSo0 (resp. PFNOSo and PFNMo) set
but not PFNdo (resp. PFNOo and PFIIPo) set.
(iii) {<0f317§‘§5> , <0.f,%.5> , <0.2f8.45>} is a PFMNo (resp. PFNMo) set but not PFINbo
(resp. PFIOSo) set.
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Remark 3.1. Form the above proposition and the examples, the following implications
are hold.

PFNOos PFNos

A

PFNOSos PFNdos

/

PFNoPos

Y

PFNMos PFNOSos

N

PFNeos

Note: A — B denotes A implies B, but not conversely.

Proposition 3.2. The statements are true.

(i) PFNIScl(S) = S UPFNint(PFNIcl(S)).
(i) PFNOSint(S) = S NPFNcl(PFNOint(S)).
(iii) PFNOPcl(S) = S UPFNcl(PFNGint(S)).
(iv) PFNIPint(S) = S NPFNint(PFNscl(S)).

v) PFNOP(PFNOPint(S)) = PFNIPint(S) U PFNcl(PFNIint(S)).
(vi) PFNIPint(PFNOPcL(S)) = PFNROIPcl(S) N PFNint(PFNIcl(S)).
(vil) PFNOSint(S) = S NPFNcl(PFNGint(S)).

(viii) PFNOScl(S) = S UPFNint(PFNIC(S)).
(ix) PFNA(PFNGint(S)) = PFNGL(PFNSint(S)).

(x) PFNint(PFNGC(S)) = PFNGint(PFNSC(S)).

Proof. Let S be any pfs, using Definition 3.4 we have PFNint(fcl(S)) C S C
0Scl(S) COScl(S)US Cint(0cl(S))US C S. Others are similar.

Theorem 3.1. S is a PFNMos iff S = PFNIPint(S) U PFNOSint(S).

Proof. Let S bea PFIMos. Then S C PFNcl(PFNOint(S))IPFNint(PFNocl(S)).
By Theorem 3.2, we have

PFNSPint(S) UPFNOSint(S) = (S N (PFNint(PFNScI(S)))) U (S N (PFNl(PFNO
nt(S))))
= SN (PFNint(PFNScl(S)) U PFNl(PFNOint(S)))
=9
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Conversely, if S = PFNIPint(S) U PFNISint(S) then, by Theorem 3.2
S = PFNSPint(S) U PFNOSint(S)
— (S N PFNint(PFNGC(S))) U (S N PFNel (PFNGint(S)))
= SN (PFNint(PFNGC(S)) U PFN(PFNint(S)))
C PFNint(PFNSCI(S)) UPFN(PFNGint(S)).
and hence S is a PFIMos.
Theorem 3.2. S is a PFNMcs iff S = PFNOPcl(S) N PFNOScl(S).
Proof. Obvious.

Theorem 3.3. The union (resp. intersection) of any family of PFNMos (resp. PFNMcs)
of U is a PFNMos (resp. PFNMecs).

Proof. Let {S, : a € Tr(A)} be a family of PFNMos's. For each a € 7r(A),
Sa € PFNl(PFNOint(S,) U PFNint(PFNScl(S,)).-

U S c | PFRAPFNGint(S,)) UPFNint(PFNScl(S,))
a€Tr(A) acTr(A)
C PFR(PFNOint(U(S,))) U PFNint(PFNScl(U(S,))).

The other case is similar.

Remark 3.2. The intersection of two PFITMos’s need not be PFIM os.

Example 3.6. In Example 3.1, By = {<0ﬁ’8‘.‘2> , <0‘§20.1> , <0'4§30.1>} and By = {<Osé’§f‘4> ,
<0.;ﬁ> , <0§$>} are PFNMos but By N By is not PFNMos.

Proposition 3.3. If S is a

(i) PFNMos and PFNOint(S) = Op, then S is a PFNIPos.
(ii) PFNMos and PFNcl(S) = Op, then S is a PFNOSos.
(iii) PFNMos and PFNdcs, then S is a PFNOSos.

(iv) PFNOSos and PFNdcs, then S is a PFINMos.

Proof.
(i) Let S be a PFNMos and PFNGint(S) = 0p, that is
S C PFNcl(PFNOint(S)) U PFNint(PFNocl(S))
= 0p U PFNint(PFNScl(S))
= PFNint(PFNocl(S)).

Hence, S is a PFI6Pos.
(ii) Let S be a PFNMos and PFNdcs, that is

S C PFN(PFNOint(S)) U PFNint(PFNScL(S))
= PFN(PFNOint(S)).

Hence S is a PFNOSos.
(iii) Let S be a PFNMos and PFNocl(S) = Op, that is

S C PFNA(PFNOint(S)) UPFNint(PFNcL(S))
= PFNcl(PFNOint(S)).
Hence S is a PFNOSos.
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(iv) Let S be a PFNOSos and PFNJcs, that is

S C PFNcl(PFNOint(S))
C PFNl(PFNOint(S)) U PFNint(PFNcI(S)).

Hence S is a PFNMos.

Remark 3.3. The converse of the above Proposition 3.3 need not be true as shown in
the following example.

Example 3.7. In Example 3.3, (i) PFN(A) is PFNIPo set but PFNOint(PFN(A)) #
0p, (ii) PFN(A) is PFNOSo set but PFNScl(PFN(A)) # 0p, (iii) PEN(A) is PFNOSo
set but not PFNdcs, (iv) PEFN(A) is PFNMo set but not PFNdcs.

Theorem 3.4. S is a PFNMes (resp. PFNMos) iff S = PFRMcl(S) (resp. S =
PFNMint(S)).

Proof. Suppose S = PFNMcl(S)=({T : S CT & T is a PFNMecs}. This means
Se({T:SCT &TisaPFNMes} and hence S is PFNMes.

Conversely, suppose S be a PFNMecs in U. Then, we have S € ([{T: SCT & T is a
PFNMes}. Hence, S C T implies S =({T: S CT & Tisa PFNMcs} = PFRMecl(S).
Hence S = PFNMint(S).

Theorem 3.5. Let S and T" in U, then the PFIMcl have,
(i) PFNMcl(0p) =0p, PFNRMcl(1lp) = 1p.
(ii) PFNRMecl(S) is a PFNMes in U.
(iil) PFRMecl(S) C PFNMcl(T) if S CT.
(iv) PFRMcl(PFNMcl(S)) = PFRMecl(S).
Proof. The proofs are directly from definition 3.4 of PFNMec set.

Theorem 3.6. Let S and T in U, then the PFIMint have,
(i) PFNMint(0p) = 0p, PFNMint(1lp) = 1p.

(ii) PFNMint(S) is a PFNMos in U.

(iii) PFNRMint(S) C PFNMint(T) if S CT.

(iv) PFRMint(PFNMint(S)) = PFNMint(S).

Proof. The proofs are directly from definition 3.4 of PFNMo set.

Proposition 3.4. Let S and T are in U, then
(i) PFNMcl(S€) = [PFNMint(S)]¢, PFNRMint(S¢) = [PFNMcl(S)]°.
(ii) PFRMcl(SUT) D PFRMcl(S) UPFNRMcl(T), PFRMcl(SNT) C PFNMcl(S)
NPFNRMecl(T).
(iii) PFRMint(SUT) 2 PFNMint(S)UPFNRMint(T), PFNRMint(SNT) C PFNM
int(S) N PFNRMint(T).

Proof.

(i) The proof is directly from definition 3.5.

(i) S CSUT or T C SUT. Hence, PFNRMcl(S) C PFRMcl(SUT) or PFNRMcl(T) C
PFRMcl(SUT). Therefore, PFRMMcl(SUT) D PFNMcl(S) UPFNMcl(T). The
other one is similar.

(iii) S € SUT or T C SUT. Hence, PFNMint(S) C PFNMint(SUT) or PFNMint(T')
C PFNMint(SUT'). Therefore, PFNMint(SUT) O PFNRMint(S)UPFNMint(T).
The other one is similar.
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Proposition 3.5. If S is in U, then

(i) PFRMc(S) D PFNA(PFNSint(S)) N PFNint(PFNIL(S)).
(il) PFNRMint(S) C PFRA(PFNOint(S)) U PFNint(5cl(S)).

Proof.

(i) PFNMcI(S) is a PFNMes and S C PFNMcl(S), then PFNMcl(S) D PFNel
(PFNGint (PFRAMel(S))) N PFNint(PFNIL(PFRMl(S)) D PFNel(PFNSint
(S)) N PFN (PFN Oel(S)).

(ii) PFNMint(S)is a PFNMos and S O PFNMint(S), then PFNMint(S) C PFNcl
(PFNOint (PFNMint(S)) U PFNint(PFNScl(PFNRMint(S))) € PFNcl(PFNO
int(S)) UPFNint (PFNcL(S)).

Theorem 3.7. Let S be in U, then

(i) PFNMcl(S) = PFNSPC(S) N PFNOSC(S),
(i) PFNMint(S) = PFNSPint(S) U PFNISint(S).

Proof.

(i) It is obvious that, PFNMcl(S) C PFNIPcl(S) N PFNOScl(S). Conversely, from
Definition 3.4, we have PFI Mcl(S) 2 PFNcl(PFNdint(PFNMcl(S))) NPFNint
(PFNGcl (PFNMecl(S))) 2 PFN(PFNSint(S)) N PFNint (PFNOcl(S)). Since,
PFNRMcl(S) is PFNMecs, by Theorem 3.6, we have PFNIPcl(S)NPFNOScl(S) =
SUPFNCl(PFN §int(S))N(SUPFNint(PFNICL(S))) = SU(PFNcl(PFNSint(S))N
PFNint(PFNOC(S))) = S C PFRMel(S). Therefore, PFNMcl(S) = PFNGP
c(S) NPFNISC(S).

(ii) is similar from (i).
Theorem 3.8. Let S be in U. Then

(i) PFRMecl(1p — S) = 1p — PFRMint(S),
(ii) PFRMint(1p — S) = 1p — PFRMcl(S).

Proof.

(i) Let T ' be PFNMeces in U and S be any set in U. Then PFNMint(S) = J{1p — T :
1p—TCS,1p —Tisa PFNMosinU} =1p—([{T:T 2 1p—S, T isa PFNMecs
inU}=1p — PFNMcl(S). Thus, PFNMcl(lp — S) = 1p — PFNMint(S5).

(ii) Let T'be PFIMos in U and S be any set in U. Then PFNMcl(S) = ({1p—T : 1p—
TDOS, 1p—T isaPFNMMesinU} =1p—UH{T: T C1p—S5,Tis a PFNMosin U}
=1p — PFNMint(S). Thus, PFNMint(lp —S)=1p — PFNRMcl(S).

Lemma 3.1. Let (U, 7r(A)) be PFMNts and S be a pfs on U. Then the following state-
ments are hold.

(i) PFNPint(PFNOPcl(S)) = PFNRIPcl(S) NPFNint(PFNcl(S)) and PFNPcl(PF
NOPint(S)) = PFNIPint(S) U PFNcl(PFNint(S)).
(il) PFROPint(PFNOPcL(S)) = PFNOIPcl(S) N PFNint(PFNOcl(S)) and PFNOPcl
(PFN6Pint(S)) = PFNOP int(S) U PFNcl(PFNOint(S)).
(iii) PFNROScl(PFNOint(S)) = PFNRScA(PFNOint(S)) = PFNint(PFNcl(PFNbint
(5)))-
Proof. Obvious.

Proposition 3.6. Let S be in U, then

(i) PFRMc(S) = § U PFNIPint(PFRSP(S)).
(ii) PFRMint(S) = S N PFNOP(PFNSPint(S)).
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Proof.
(i) By Lemma 3.1

SUPFNIPint(PFNOPcl(S)) = S U (PFNSPcl(S) N PFNint(PFNOcl(S)))
= (SUPFNIPcl(S)) N (S UPFNint(PFNOcL(S)))
= PFNOPcl(S) N PFNIScL(S)
= PFNMcl(S).
(ii) Obvious.

Theorem 3.9. Let S be in U, then the following are equivalent.

(i) Sis an PFNMos.
(ii)) S C PFNOPc(PFNOPint(S)).
(iii) PFNOPcL(S) = PFROPcl(PFNSPint(S)).

Proof. (i) — (ii): Let S be an PFINMos. Then by Theorem 3.6, S = PFNMint(S)
and by Proposition 3.6, S = SOPFNOPcl(PFNGPint(S)) and hence, S € PFNIPcl(PF
MNoPint(S)).

(ii) — (i): Let S € PFNOPcl(PFNoPint(S)). Then by Proposition 3.6, S C SN
PFNROPl(PFNSPint(S)) = PFNMint(S). So, S C PFINMint(S) and hence, S is an
PFNMos.

(ii) — (iii): Let S € PFNOPcl(PFNOPint(S)). Then PFNOPcl(S) C PFNOPcl(PF
MNoPint(S)) and hence, PFNIPcl(S) = PFROPcl(PFNIPint(S)).

(ili) — (ii): Obvious

Theorem 3.10. Let S be in U, then the following are equivalent.

(i) S is an PFNMes.
(ii) PFNOPint(PFNSPcl(S)) C S.
(iii) PFNOPint(S) = PFROPint(PFNSPcl(S)).

Proof. (i) — (ii): Let S be an PFNMcs. Then by Theorem 3.5, S = PFNMcl(S) and
by Proposition 3.6, S = S N PFNOPint(PFNIPcl(S)) and hence, S O PFNOPint(PF
NIPel(S)).

(ii) — (i): Let S O PFNOPint(PFNIPcl(S)). Then by Proposition 3.6, S O S U
PFNIPint(PFNOPC(S)) = PFRMe(S). So, S D PFNMecl(S) and hence, S is an
PFNMecs.

(ii) — (iii): Let S D PFNOPint(PFNGPel(S)). Then PFNOPint(S) D PFNIPint(PF
NSP(S)) and hence, PFROPint(S) = PFNGPint(PFNGPC(S)).

(iii) — (ii): Obvious

4. APPLICATION

Entropy as a measure of fuzziness was first proposed by Zadeh [28]. Later many math-
ematicians defined several entropy measures. In this section, we focus on defining an
entropy measure for pfs that connects the degree of membership and non-membership.
Ss an example, we have applied the proposed entropy measure in the field of decision
making.

Definition 4.1. Let A = {< x,ua(x),  a(x)|x € X} be a pfs in U. The new entropy
measure for A denoted by e,¢,(A), is a function, eyfs : Tprs(U) — [0,1] and is defined as
eprs(A) =1—= 123" (a—Aa)% for every‘'z; € A, where 7,7,(U) denote the family of all
pfs’son U.



P. DEIVANAYAGI et al.: WEAKER FORMS OF OPEN SETS IN ... 293

Example 4.1. To select the most suitable educational institution for specific courses,
we incorporate both qualitative and quantitative decision-making criteria. In particular,
we consider alumni feedback as well as online ratings and rankings provided by various
professional and educational organizations. These sources offer valuable insights into the
performance and reputation of institutions from multiple perspectives.

In this study, we focus on five educational institutions, denoted as I1, 12, I3, I4 and
I5, and evaluate them with respect to five different courses, labeled C1, C2, C3, C4 and
C5. The online ratings for each institution in each course category are collected and then
transformed into Pythagorean fuzzy sets, which allow for a more nuanced representation
of uncertainty, hesitation, and partial truth associated with subjective evaluations.

To facilitate decision-making and identify the optimal institution for each course, we
apply an entropy measure to assess the degree of fuzziness in the collected data. The
entropy measure serves as a tool to quantify the uncertainty inherent in the evaluations
and helps in selecting the institution that offers the highest clarity or confidence in terms of
course quality. Ultimately, the institution with the minimum fuzziness across the evaluated
criteria is identified as the most appropriate choice for each respective course.

Table 1. Ratings of the educational institutions based on the courses.

Course 1 (C1)

Course 2 (C2)

Course 3 (C3)

Course 4 (C4)

Course 5 (C5)

<I1,C1,0.4,06 >

<11,02;0.3,02 >

<1I1,C3,0.1,0.2 >

<11,04;04,03 >

<T11,05,01,02 >

<12,C1,0.7,03 >

<12,02,0.2,02 >

<12,03;0.0,0.1 >

<12,04,0.7,03 >

<12,05,01,01 >

<13,01,03,04 >

<13,02,0.6,03 >

< 13,03;0.2,0.1 >

< 13,C4;0.2,0.2 >

<13,05,0.1,0.0 >

< I14,C1;0.1,0.2 >

< I14,C2;0.2,0.4 >

< 14,C3;0.8,0.2 >

< 14,C4;0.2,0.1 >

< 14,C5;0.2,0.1 >

<15,C1,0.1,0.1 >

<15,02;0.0,0.2 >

<15,03;0.2,0.0 >

<15,04;0.2,0.0 >

<15,05;08,0.1 >

Clearly, all values in the Table 1 are PFs’s. Now we calculate the eprs of each value.

Table 2. Entropy measure of each institutions for the different courses.

Course 1 (C1) | Course 2 (C2) | Course 3 (C3) | Course 4 (C4) | Course 5 (C5)
Institution 1 (I1) 0.96 0.99 0.99 0.99 0.99
Institution 2 (I2) 0.84 1 0.99 0.84 1
Institution 3 (I3) 0.99 0.91 0.99 1 0.99
Institution 4 (I4) 0.99 0.96 0.64 0.99 0.99
Institution 5 (I5) 1 0.96 0.96 0.96 0.51

From Table 2, it is clear that eprms(12,C1) < eprms(I1,C1) < eprms(13,C1) <
Ep]:ms(f4, Cl) < 673}‘918(15, Cl)

Similarly

873]:915(13,02) < Ep]:ms(fél 02) < Ep]:ms( ) (I , 2) < Ep]:ms(IQ,C )

eprms(14,C3) < eprms(I5,C3) < eprms(I1,C3) < eprms(12,C3) < eprms(13,C3)

873]:915(12 04) < 67)]:9’15([5 04) < 873]:918(11 C4) < Epfms<f4 04) < Ep]:ms([?),cél)

eprns(15,C5) < eprms(I1,C5) < eprms(13,C5) < eprms(14,C5) < eprms(12,C5).

It is clear that Institution 2 is best for the course C1 and C4, Institution 3 is best for
the course C2, Institution 4 is best for the course C3 and Institution 5 is best for the
course C5.

,C2

5. CONCLUSION

We have studied about Pythagorean fuzzy M-open set and Pythagorean fuzzy M-closed
set and their respective interior and closure operators in Pythagorean fuzzy Topological
Space in this paper. Also we have studied some of their fundamental properties along with
examples in PFIts. Moreover, we have discussed about near open sets of Pythagorean
fuzzy M-open sets in PFIts. In future, we can extend these results to Pythagorean
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fuzzy M- continuous mappings, Pythagorean fuzzy M-open mappings and Pythagorean
fuzzy M-closed mappings in PFIts. We present ameasure of entropy and one application
related to it. This measure is consistent with similar considerations for other sets like fuzzy
sets and Pythagorean fuzzy sets etc. Hence the proposed entropy measure can be used to
measure the uncertainty factor in related problems.
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