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WEAKER FORMS OF OPEN SETS IN PYTHAGOREAN FUZZY

NANO TOPOLOGICAL SPACES AND ITS APPLICATION USING

ENTROPY MEASURE

P. DEIVANAYAGI1, S. TAMILSELVAN2, A. VADIVEL3,∗, §

Abstract. In this paper, we introduce a Pythagorean Fuzzy nano M -open set which is
the union of Pythagorean Fuzzy nano δP-open sets and Pythagorean Fuzzy nano θS-open
sets in Pythagorean Fuzzy nano topological spaces. Also, we discuss about near open
sets, their properties and examples of a Pythagorean Fuzzy nano M -open set. Moreover,
we investigate some of their basic properties and examples of Pythagorean Fuzzy nano
M -interior and M -closure in a Pythagorean Fuzzy nano topological spaces. One real life
applications, one on better way of shopping, based on this proposed entropy measure are
also illustrated.

Keywords: Pythagorean Fuzzy nano M -open sets, Pythagorean Fuzzy nano M -closed
sets, Pythagorean Fuzzy nanoM -int(A) and Pythagorean Fuzzy nanoM -cl(A), Pythagorean
Fuzzy Entropy.
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1. Introduction

Zadeh [27] generalized the usual set by using fuzzy set in which every detail is described
with a degree of membership function. The fuzzy set has many programs in economic
system, decision making, facts mining, commercial enterprise and many others. Fuzzy
set has been generalized to greater non-standard fuzzy subsets. As Intuitionistic fuzzy
subset become introduced with the aid of Atanassov [3], in which every element had the
degree of membership and the degree of non- membership. Yager [24, 25, 26] presented
the perception of Pythagorean fuzzy subset that is a typical fuzzy subsets and which has
many powerful applications in natural and social sciences. Pythagorean fuzzy subsets
can be used appropriately on every instant where intuitionistic fuzzy subsets cannot be
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used. Standard topology has been stepped forward by means of taking its motivation from
classical analysis and applied on several sections of research inclusive of system getting
to know, statistics evaluation, facts mining. Farther the scrutiny of topology refers the
relationship between spatial gadgets and features and it may be used to explain some sure
spatial functions and to conceive statistics units which have higher great control and extra
statistics integrity. In 1968, Chang [7] described the theory of fuzzy topological space and
generalized some fundamental idea of topology inclusive of open set, closed set, continuity
and compactness. Following this observation, Lowen gave a different explanation of a
fuzzy topological space by way of converting a primary property of topology [13]. In
1995, Coker delivered the notion of intuitionistic fuzzy topological space and studied some
equivalent variations of some standards of classical topology together with continuity and
compactness [8]. Furthermore, some authors studied the concept of fuzzy soft topological
space and its packages in choice-making environment.

Pawlak [16] introduced Rough set theory by handling vagueness and uncertainty. This
can be often defined by means of topological operations, interior and closure, called ap-
proximations. In 2013, Lellis Thivagar [11] introduced an extension of rough set theory
called Nano topology and defined its topological spaces in terms of approximations and
boundary region of a subset of a universe using an equivalence relation on it.

S. Saha [17] defined δ-open sets in fuzzy topological spaces, nano topological space by
Pankajam et al. [15] and neutrosophic topological space by Vadivel et al. [21]. Recently,
Lellis Thivagar et.al [12] explored a new concept of neutrosophic nano topology, intuition-
istic nano topology and fuzzy nano topology. El-Maghrabi and Al-Juhani [9] proposed
the concept of M -open sets in topological spaces in 2011 and examined some of their
features. Padma et al. [14] also found M -open sets in nano topological spaces. Vadivel et
al. [19, 20, 22] discussed some open sets in fuzzy nano and neutrosophic nano topological
spaces. Kalaiyarsan et al. [10] and Vadivel et al. [23] introduced M -open sets in fuzzy
and neutrosophic nano topological spaces.

The remainder of this paper is organized as follows. In section 2, some basic definitions
of fs’s, IFS’s and PFs’s are briefly reviewed. In section 3, We develop the concept of
some stronger and weaker forms of Pythagorean fuzzy nano open sets in Pythagorean fuzzy
nano topological space and also specialized some of their basic properties with examples.
Finally, we presented an entropy measure for PFNs’s and one real- world scenarios where
this entropy measure can be used are mentioned in section 4. The paper is concluded in
section 5.

2. Preliminaries

We recall some basic notions of fuzzy sets, IFS’s and PFNs’s .

Definition 2.1. [27] Let U be a nonempty set. A fuzzy set A in U is characterized by a
membership function µA : X → [0, 1]. That is:

µA(x) =


1, if x ∈ X

0, if x /∈ X

(0, 1) if x is partly in X.

Alternatively, a fuzzy set A in U is an object having the form A = {< x, µA(x) > |x ∈
X} or A =

{〈
µA(x)

x

〉
|x ∈ X

}
, where the function µA(x) : X → [0, 1] defines the degree

of membership of the element, x ∈ X.
The closer the membership value µA(x) to 1, the more x belongs to A, where the grades

1 and 0 represent full membership and full nonmembership. Fuzzy set is a collection of
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objects with graded membership, that is, having degree of membership. Fuzzy set is an
extension of the classical notion of set. In classical set theory, the membership of elements
in a set is assessed in a binary terms according to a bivalent condition; an element either
belongs or does not belong to the set. Classical bivalent sets are in fuzzy set theory called
crisp sets. Fuzzy sets are generalized classical sets, since the indicator function of classical
sets is special cases of the membership functions of fuzzy sets, if the latter only take values
0 or 1. Fuzzy sets theory permits the gradual assessment of the membership of element
in a set; this is described with the aid of a membership function valued in the real unit
interval [0, 1].

Let us consider two examples:
(i) all employees of XY Z who are over 1.8m in height; (ii) all employees of XY Z

who are tall. The first example is a classical set with a universe (all XY Z employees)
and a membership rule that divides the universe into members (those over 1.8m) and
nonmembers. The second example is a fuzzy set, because some employees are definitely
in the set and some are definitely not in the set, but some are borderline.

This distinction between the ins, the outs, and the borderline is made more exact by the
membership function, µ. If we return to our second example and let A represent the fuzzy
set of all tall employees and x represent a member of the universe U (i.e. all employees),
then µA(x) would be µA(x) = 1 if x is definitely tall or µA(x) = 0 if x is definitely not tall
or 0 < µA(x) < 1 for borderline cases.

Definition 2.2. [3, 4, 5, 6] Let a nonempty set U be fixed. An IFS A in U is an object

having the form: A = {< x, µA(x), λA(x) > |x ∈ X} or A =
{〈

µA(x),λA(x)
x

〉
|x ∈ X

}
,

where the functions µA(x) : X → [0, 1] and λA(x) : X → [0, 1] define the degree of
membership and the degree of nonmembership, respectively, of the element x ∈ X to A,
which is a subset of X, and for every x ∈ X : 0 ≤ µA(x) + λA(x) ≤ 1. For each A in U :
πA(x) = 1− µA(x)− λA(x) is the intuitionistic fuzzy set index or hesitation margin of x
in X. The hesitation margin πA(x) is the degree of nondeterminacy of x ∈ X to the set A
and πA(x) ∈ [0, 1]. The hesitation margin is the function that expresses lack of knowledge
of whether x ∈ X or x /∈ X. Thus: µA(x) + λA(x) + πA(x) = 1.

Example 2.1. Let X = {x, y, z} be a fixed universe of discourse and A = {
〈
0.6,0.1

x

〉
,〈

0.8,0.1
y

〉
,
〈
0.5,0.3

z

〉
}, be the intuitionistic fuzzy set in U . The hesitation margins of the

elements x, y, z to A are as follows: πA(x) = 0.3, πA(y) = 0.1 and πA(z) = 0.2.

Definition 2.3. [24, 25, 26] Let U be a universal set. Then, a Pythagorean fuzzy
set A, which is a set of ordered pairs over U , is defined by the following: A = {<
x, µA(x), λA(x)|x ∈ X} or A =

{〈
µA(x),λA(x)

x

〉
|x ∈ X

}
, where the functions µA(x) :

X → [0, 1] and λA(x) : X → [0, 1] define the degree of membership and the degree of non-
membership, respectively, of the element x ∈ X to A, which is a subset of U , and for every
x ∈ X, 0 ≤ (µA(x))

2 + (λA(x))
2 ≤ 1. Supposing (µA(x))

2 + (λA(x))
2 ≤ 1, then there is

a degree of indeterminacy of x ∈ X to A defined by πA(x) =
√

1− [(µA(x))2 + (λA(x))2]
and πA(x) ∈ [0, 1]. In what follows, (µA(x))

2 + (λA(x))
2 + (πA(x))

2 = 1. Otherwise,
πA(x) = 0 whenever (µA(x))

2+(λA(x))
2 = 1. We denote the set of all Pythagorean fuzzy

sets over U by pfs’s.

Definition 2.4. [26] Let A and B be pfs’s of the forms A = {< a, µA(a), λA(a) > |a ∈ X}
and B = {< a, µB(a), λB(a) > |a ∈ X}. Then
(i) A ⊆ B if and only if µA(a) ≤ µB(a) and λA(a) ≥ λB(a) for all a ∈ X.
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(ii) A = B if and only if A ⊆ B and B ⊆ A.
(iii) Ā = {< a, λA(a), µA(a) > |a ∈ X}.
(iv) A ∩B = {< a, µA(a) ∧ µB(a), λA(a) ∨ λB(a) > |a ∈ X}.
(v) A ∪B = {< a, µA(a) ∨ µB(a), λA(a) ∧ λB(a) > |a ∈ X}.
(vi) 0P = {< a, 0, 1 > |a ∈ X} and 1P = {< a, 1, 0 > |a ∈ X}.
(vii) 1̄P = 0P and 0̄P = 1P .

Definition 2.5. [1] Let U be a non-empty set andR be an equivalence relation on U . LetA
be a Pythagorean fuzzy set in U with the membership function µA(x) and non membership
function λA(x), ∀ x ∈ U . The Pythagorean fuzzy nano lower, Pythagorean fuzzy nano
upper approximation and Pythagorean fuzzy nano boundary of A in the approximation
(U,R) denoted by PFN (A),PFN (A) and BPFN (A) are respectively defined as follows:

(i) PFN (A) =
{
⟨x, µR(A)(x), λR(A)(x)⟩/y ∈ [x]R, x ∈ U

}
(ii) PFN (F ) =

{
⟨x, µR(A)(x), λR(A)(x)⟩/y ∈ [x]R, x ∈ U

}
(iii) BPFN (F ) = PFN (F )− PFN (F )

where µR(A)(x) =
∧

y∈[x]R µA(y)

λR(A)(x) =
∧

y∈[x]R λA(y),

µR(A)(x) =
∨

y∈[x]R µA(y),

λR(A)(x) =
∨

y∈[x]R λA(y).

Definition 2.6. [1] Let U be an universe of discourse, R be an equivalence relation on U
and A be a Pythagorean fuzzy set in U and if the collection τR(A) = {0P , 1P ,PFN (A),
PFN (A), BPFN (A)} forms a topology then it is said to be a Pythagorean fuzzy nano
topology. We call (U, τR(A)) (or simply U) as the Pythagorean fuzzy nano topological
space. The elements of τR(A) are called Pythagorean fuzzy nano open (briefly, PFN o)
sets.

Remark 2.1. [1] [τR(A)]c is called the dual fuzzy nano topology of τR(A). Elements of
[τR(A)]c are called Pythagorean fuzzy nano closed (briefly, PFN c) sets. Thus, we note
that a Pythagorean fuzzy set G of U is Pythagorean fuzzy nano closed in τR(A) if and
only if 1P −G is Pythagorean fuzzy nano open in τR(A).

Definition 2.7. [1, 2] Let (U, τR(A)) be a PFN ts with respect to A where A is a
Pythagorean fuzzy subset of U . Let S be a Pythagorean fuzzy subset of U . Then
Pythagorean fuzzy nano

(i) interior of S (briefly, PFN int(S)) is defined by PFN int(S) = ∪{I : I ⊆ S & I is a
PFN o set in U}.

(ii) closure of S (briefly, PFN cl(S)) is defined by PFN cl(S) = ∩{A : S ⊆ A & A is a
PFN c set in U}.

(iii) regular open (briefly, PFN ro) set if S = PFN int(PFN cl(S)).
(iv) regular closed (briefly, PFN rc) set if S = PFN cl(PFN int(S)).

3. Pythagorean fuzzy nano M-open sets

Definition 3.1. Let (U, τR(A)) be an PFNts and S = {< s, µS(s), λS(s) > |s ∈ U} be
an PFNs in U . Then the PFNδ-interior and the PFNδ-closure of S are denoted by
PFNδint(S) and PFNδcl(S) and are defined as follows. PFNδint(S) = ∪{G|G is an
PFNros and G ⊆ S}, PFNδcl(S) = ∩{K|K is an PFNrcs and S ⊆ K}.
Definition 3.2. Let (U, τR(A)) be a PFNts and S = {< s, µS(s), λS(s) > |s ∈ U} be an
PFNs in U . A set S is said to be PFN
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(i) δ-open set (briefly, PFNδos) if S = PFNδint(S),
(ii) δ-pre open set (briefly, PFNδPos) if S ⊆ PFNint(PFNδcl(S)).
(iii) δ-semi open set (briefly, PFNδSos) if S ⊆ PFNcl(PFNδint(S)).
(iv) e open set (briefly, PFNeos ) if S ⊆ PFNcl(PFNδint(S))∪PFNint(PFNδcl(S)).
(v) δ (resp. δ-pre, δ-semi and e) dense if PFNδcl(S) (resp. PFNδPcl(S), PFNδScl(S)

and PFNecl(S)) = 1P .

The complement of an PFNδos (resp. PFNδPos, PFNδSos and PFNeos) is called
an PFNδ (resp. PFNδP, PFN δS and PFNe) closed set (briefly, PFNδcs (resp.
PFNδPcs, PFNδScs and PFNecs)) in U .

The family of all PFNδos (resp. PFNδcs, PFNδPos, PFNδPcs, PFNδSos, PFNδ
Scs, PFNeos and PFNecs) of U is denoted by PFNδOS(U), (resp. PFNδCS(U), PFN
δPOS(U), PFNδPCS(U),PFNδSOS(U),PFNδSCS(U),PFNeOS(U) and PFNeCS
(U)).

Example 3.1. Assume U = {s1, s2, s3, s4} be the universe set and the equivalence relation

is U/R = {{s1, s4}, {s2}, {s3}}. Let A =
{〈

s1
0.6,0.4

〉
,
〈

s2
0.4,0.8

〉
,
〈

s3
0.5,0.75

〉
,
〈

s4
0.7,0.55

〉}
be a

Pythagorean fuzzy subset of U .

PFN(A) =

{〈
s1, s4

0.6, 0.55

〉
,

〈
s2

0.4, 0.8

〉
,

〈
s3

0.5, 0.75

〉}
,

PFN(A) =

{〈
s1, s4
0.7, 0.4

〉
,

〈
s2

0.4, 0.8

〉
,

〈
s3

0.5, 0.75

〉}
,

BPFN(A) =

{〈
s1, s4

0.55, 0.6

〉
,

〈
s2

0.4, 0.8

〉
,

〈
s3

0.5, 0.75

〉}
.

Thus τR(A) = {0P , 1P ,PFN(A),PFN(A), BPFN(A)}. Then{〈
s1,s4

0.6,0.55

〉
,
〈

s2
0.4,0.8

〉
,
〈

s3
0.5,0.75

〉}
is a PFNo (resp. PFNδPo, PFNδSo, PFNδαo, PF

Nδβo and PFNeo ) set.

Definition 3.3. Let (U, τR(A)) be an PFNts and S = {< s, µS(s), λS(s) > |s ∈ U} be
an PFNs in U . Then the PFNδ-pre (resp. PFNδ-semi and PFNδβ)-interior and the
PFNδ-pre (resp. PFNδ-semi and PFNe)-closure of S are denoted by PFNδPint(S)
(resp. PFNδSint(S) and PFNeint(S)) and the PFNecl(S) (resp. PFNδScl(S) and
PFNecl(S)) and are defined as follows:

PFNδPint(S) (resp. PFNδSint(S) and PFNeint(S)) = ∪{G|G is a PFNδPos (resp.
PFNδSos and PFNeos)

and G ⊆ S} and PFNδPcl(S) (resp. PFNδScl(S) and PFNecl(S)) = ∩{K|K is an
PFNδPcs (resp. PFNδScs and PFNecs) and S ⊆ K}.

Example 3.2. In Example 3.1, (i) PFNδPint(BPFN(A)) = BPFN(A), (ii) PFNδS
int(BPFN(A)) = BPFN(A), (iii) PFNδβint(BPFN(A)) = BPFN(A), (iv) PFNeint(BPFN

(A)) = BPFN(A),
(v) PFNδPcl((BPFN(A))c) = (BPFN(A))c, (vi) PFNδScl((BPFN(A))c) = (BPFN(A))c,

(vii) PFNδβcl((BPFN(A))c) = (BPFN(A))c, (viii) PFNeint((BPFN(A))c) = (BPFN(A))c,

Definition 3.4. Let (U, τR(A)) be a PFNts and S be a PFNs in U. A set S is said to
be PFN

(i) θ-interior of S (briefly, PFNθint(S)) is defined by PFNθint(S) =
⋃
{PFNint(T ) :

T ⊆ S & T is a PFNcs in U}.
(ii) θ-open set (briefly, PFNθos) if S = PFNθint(S).
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(iii) θ -semi open set (briefly, PFNθSos) if S ⊆ PFNcl(PFNθint(S)).
(iv) M -open set (briefly, PFNMos) if S ⊆ PFNcl(PFNθint(S)) ∪ PFNint(PFNδcl

(S)).

The complement of a PFNMos (resp. PFNθos & PFNθSos) is called an PFNM
(resp. PFNθ & PFNθS) closed set (briefly, PFNMcs (resp. PFNθcs & PFNθScs)) in
U .

The family of all PFNθos (resp. PFNθcs, PFNθSos, PFNθScs, PFNMos and PF
NMcs) of U is denoted by PFNθOS(U) (resp. PFNθCS(U), PFNθSOS(U), PFNθS
CS(U), PFN MOS(U) and PFNMCS(U)).

Example 3.3. Assume U = {s1, s2, s3, s4} be the universe set and the equivalence relation

is U/R = {{s1, s4}, {s2}, {s3}}. Let A =
{〈

s1
0.8,0.4

〉
,
〈

s2
0.6,0.6

〉
,
〈

s3
0.7,0.7

〉
,
〈

s4
0.5,0.7

〉}
be a

Pythagorean fuzzy subset of U .

PFN(A) =

{〈
s1, s4
0.5, 0.7

〉
,

〈
s2

0.6, 0.6

〉
,

〈
s3

0.7, 0.7

〉}
,

PFN(A) =

{〈
s1, s4
0.8, 0.4

〉
,

〈
s2

0.6, 0.6

〉
,

〈
s3

0.7, 0.7

〉}
,

BPFN(A) =

{〈
s1, s4
0.7, 0.5

〉
,

〈
s2

0.6, 0.6

〉
,

〈
s3

0.7, 0.7

〉}
.

Thus τR(A) = {0P , 1P ,PFN(A),PFN(A), BPFN(A)}. Then{〈
s1,s4
0.5,0.7

〉
,
〈

s2
0.6,0.6

〉
,
〈

s3
0.7,0.7

〉}
is a PFNθo (resp. PFNθSo and PFNMo ) set;

PFNθint(BPFN(A)) = BPFN(A).

Definition 3.5. Let (U, τR(A)) be a PFNts and S be a PFNs in U. Then the PFN

(i) M -interior (resp. PFNθ-interior and PFNθ-semi interior) of S (briefly, PFNMint
(S) (resp. PFNθint(S), PFNθ Sint(S)) is defined by PFNMint(S) (resp. PFN
θint(S) and PFNθSint(S)) = ∪{T : T ⊆ S and T is a PFNMos (resp. PFNθos and
PFNθS os)} in U .

(ii) M -closure (resp. θ-closure and θ-semi closure) of S (briefly, PFNMcl(S) (resp.
PFNθcl(S) & PFNθScl(S)) is defined by PFNMcl(S) (resp. PFNθcl(S) and
PFNθScl(S)) = ∩{T : S ⊆ T and T is a PFNMcs (resp. PFNθcs and PFNθScs)}
in U .

Example 3.4. In Example 3.3, (i) PFNθint(BPFN(A)) = BPFN(A),
(ii) PFNθSint(BPFN(A)) = BPFN(A), (iii) PFNMint(BPFN(A)) = BPFN(A), (iv)
PFNθcl((BPFN(A))c) = (BPFN(A))c, (v) PFNθSint((BPFN(A))c) = (BPFN(A))c, (vi1)
PFNMint((BPFN(A))

c) = (BPFN(A))
c,

Proposition 3.1. Let (U, τR(A)) be a PFNts. Then the following statements are hold
but the converse does not true.

(i) Every PFNθos (resp. PFNθcs) is a PFNos (resp. PFNcs).
(ii) Every PFNθos (resp. PFNθcs) is a PFNθSos (resp. PFNθScs).
(iii) Every PFNθSos (resp. PFNθScs) is a PFNMos (resp. PFNMcs).
(iv) Every PFNδos (resp. PFNδcs) is a PFNδSos (resp. PFNδScs).
(v) Every PFNδos (resp. PFNδcs) is a PFNδPos (resp. PFNδPcs).
(vi) Every PFNδSos (resp. PFNδScs) is a PFNeos (resp. PFNecs).
(vii) Every PFNδPos (resp. PFNδPcs) is a PFNMos (resp. PFNMcs).
(viii) Every PFNMos (resp. PFNMcs) is a PFNeos (resp. PFNecs).
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Proof.

(i) If S is a PFNθos in U , then S = PFNθint(S) ⊆ PFNint(S). Therefore, S is a
PFNos.

(ii) If S is a PFNθos in U , then S = PFNθint(S). So, S = PFNθint(S) ⊆ PFNcl(PF
Nθint(S)). Therefore, S is a PFNθSos.

(iii) If S is a PFNθSos in U , then S ⊆ PFNcl(PFNθint(S)). So, S ⊆ PFNcl(PFNθint
(S)) ⊆ PFNcl(PFNθint(S)) ∪ PFNint(PFNδcl(S)). Therefore, S is a PFNMos.

(iv) If S is a PFNδos in U , then S = PFNδint(S). So, S = PFNδint(S) ⊆ PFNcl(PF
Nδint(S)). Therefore, S is a PFNδSos.

(v) If S is a PFNδos in U , then S = PFNδint(S). So, S = PFNδint(S) ⊆ PFNint(S)
⊆ PFNint(PFNδcl(S)). Therefore, S is a PFNδPos.

(vi) If S is a PFNδSos in U , then S ⊆ PFNcl(PFNδint(S)) ⊆ PFNcl((PFNδint(S)))
∪PFNint(PFNδcl(S)). Therefore, S is a PFNeos.

(vii) If S is a PFNδPos in U , then S ⊆ PFNint(PFNδcl(S)) ⊆ PFNcl(PFNθint(S))
∪PFNint(PFNδcl(S)). Therefore, S is a PFNMos.

(viii) If S is a PFNMos then S ⊆ PFNcl(PFNθint(S))∪PFNint(PFNδcl(S)). So, S ⊆
PFNcl(PFNθint(S)) ∪ PFNint(PFNδcl(S)) ⊆ PFNint(PFNδcl(S) ⊆ PFNcl
(PFNδ int(S)) ∪ PFNint(PFNδcl(S))). Therefore S is a PFNeos. It is also true
for their respective closed sets.

Example 3.5. Assume U = {s1, s2, s3, s4} be the universe set and the equivalence relation

is U/R = {{s1, s4}, {s2}, {s3}}. Let A =
{〈

s1
0.3,0.1

〉
,
〈

s2
0.1,0.5

〉
,
〈

s3
0.2,0.45

〉
,
〈

s4
0.4,0.25

〉}
be a

Pythagorean fuzzy subset of U .

PFN(A) =

{〈
s1, s4

0.3, 0.25

〉
,

〈
s2

0.1, 0.5

〉
,

〈
s3

0.2, 0.45

〉}
,

PFN(A) =

{〈
s1, s4
0.4, 0.1

〉
,

〈
s2

0.1, 0.5

〉
,

〈
s3

0.2, 0.45

〉}
,

BPFN(A) =

{〈
s1, s4

0.25, 0.3

〉
,

〈
s2

0.1, 0.5

〉
,

〈
s3

0.2, 0.45

〉}
.

Thus τR(A) = {0P , 1P ,PFN(A),PFN(A), BPFN(A)}. Then
(i)

{〈
s1,s4
0.4,0.1

〉
,
〈

s2
0.1,0.5

〉
,
〈

s3
0.2,0.45

〉}
is a PFNo (resp. PFNδPo, PFNeo and PFNeo )

set but not PFNδo (resp. PFNδo, PFNMo and PFNδSo) set.
(ii)

{〈
s1,s4

0.25,0.3

〉
,
〈

s2
0.5,0.1

〉
,
〈

s3
0.45,0.2

〉}
is a PFNδSo (resp. PFNθSo and PFNMo) set

but not PFNδo (resp. PFNθo and PFNδPo) set.

(iii)
{〈

s1,s4
0.3,0.25

〉
,
〈

s2
0.1,0.5

〉
,
〈

s3
0.2,0.45

〉}
is a PFNo (resp. PFNMo) set but not PFNθo

(resp. PFNθSo) set.
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Remark 3.1. Form the above proposition and the examples, the following implications
are hold.

PFNθos - PFNos

?

6

PFNθSos PFNδos

? ?

�
�

�	

PFNδPos

PFNMos PFNδSos

PFNeos

�
�

�	

@
@
@R

�
�

�	

Note: A → B denotes A implies B, but not conversely.

Proposition 3.2. The statements are true.

(i) PFNθScl(S) = S ∪ PFNint(PFNθcl(S)).
(ii) PFNθSint(S) = S ∩ PFNcl(PFNθint(S)).
(iii) PFNδPcl(S) = S ∪ PFNcl(PFNδint(S)).
(iv) PFNδPint(S) = S ∩ PFNint(PFNδcl(S)).
(v) PFNδPcl(PFNδPint(S)) = PFNδP int(S) ∪ PFNcl(PFNδint(S)).
(vi) PFNδPint(PFNδPcl(S)) = PFNδPcl(S) ∩ PFNint(PFNδcl(S)).
(vii) PFNδSint(S) = S ∩ PFNcl(PFNδint(S)).
(viii) PFNδScl(S) = S ∪ PFNint(PFNδcl(S)).
(ix) PFNcl(PFNδint(S)) = PFNδcl(PFNδint(S)).
(x) PFNint(PFNδcl(S)) = PFNδint(PFNδcl(S)).

Proof. Let S be any pfs, using Definition 3.4 we have PFNint(θcl(S)) ⊆ S ⊆
θScl(S) ⊆ θScl(S) ∪ S ⊆ int(θcl(S)) ∪ S ⊆ S. Others are similar.

Theorem 3.1. S is a PFNMos iff S = PFNδPint(S) ∪ PFNθSint(S).

Proof. Let S be a PFNMos. Then S ⊆ PFNcl(PFNθint(S))∪PFNint(PFNδcl(S)).
By Theorem 3.2, we have

PFNδPint(S) ∪ PFNθSint(S) = (S ∩ (PFNint(PFNδcl(S)))) ∪ (S ∩ (PFNcl(PFNθ

int(S))))

= S ∩ (PFNint(PFNδcl(S)) ∪ PFNcl(PFNθint(S)))

= S
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Conversely, if S = PFNδPint(S) ∪ PFNθSint(S) then, by Theorem 3.2

S = PFNδPint(S) ∪ PFNθSint(S)
= (S ∩ PFNint(PFNδcl(S))) ∪ (S ∩ PFNcl(PFNθint(S)))

= S ∩ (PFNint(PFNδcl(S)) ∪ PFNcl(PFNθint(S)))

⊆ PFNint(PFNδcl(S)) ∪ PFNcl(PFNθint(S)).

and hence S is a PFNMos.

Theorem 3.2. S is a PFNMcs iff S = PFNδPcl(S) ∩ PFNθScl(S).

Proof. Obvious.

Theorem 3.3. The union (resp. intersection) of any family of PFNMos (resp. PFNMcs)
of U is a PFNMos (resp. PFNMcs).

Proof. Let {Sa : a ∈ τR(A)} be a family of PFNMos′s. For each a ∈ τR(A),
Sa ⊆ PFNcl(PFNθint(Sa) ∪ PFNint(PFNδcl(Sa)).⋃

a∈τR(A)

(Sa) ⊆
⋃

a∈τR(A)

PFNcl(PFNθint(Sa)) ∪ PFNint(PFNδcl(Sa))

⊆ PFNcl(PFNθint(∪(Sa))) ∪ PFNint(PFNδcl(∪(Sa))).

The other case is similar.

Remark 3.2. The intersection of two PFNMos’s need not be PFNMos.

Example 3.6. In Example 3.1, B1 =
{〈

s1,s4
0.1,0.2

〉
,
〈

s2
0.5,0.1

〉
,
〈

s3
0.45,0.1

〉}
andB2 = {

〈
s1,s4
0.2,0.4

〉
,〈

s2
0.7,0.1

〉
,
〈

s3
0.5,0.2

〉
} are PFNMos but B1 ∩B2 is not PFNMos.

Proposition 3.3. If S is a

(i) PFNMos and PFNθint(S) = 0P , then S is a PFNδPos.
(ii) PFNMos and PFNδcl(S) = 0P , then S is a PFNθSos.
(iii) PFNMos and PFNδcs, then S is a PFNθSos.
(iv) PFNθSos and PFNδcs, then S is a PFNMos.

Proof.

(i) Let S be a PFNMos and PFNθint(S) = 0P , that is

S ⊆ PFNcl(PFNθint(S)) ∪ PFNint(PFNδcl(S))

= 0P ∪ PFNint(PFNδcl(S))

= PFNint(PFNδcl(S)).

Hence, S is a PFNδPos.
(ii) Let S be a PFNMos and PFNδcs, that is

S ⊆ PFNcl(PFNθint(S)) ∪ PFNint(PFNδcl(S))

= PFNcl(PFNθint(S)).

Hence S is a PFNθSos.
(iii) Let S be a PFNMos and PFNδcl(S) = 0P , that is

S ⊆ PFNcl(PFNθint(S)) ∪ PFNint(PFNδcl(S))

= PFNcl(PFNθint(S)).

Hence S is a PFNθSos.
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(iv) Let S be a PFNθSos and PFNδcs, that is

S ⊆ PFNcl(PFNθint(S))

⊆ PFNcl(PFNθint(S)) ∪ PFNint(PFNδcl(S)).

Hence S is a PFNMos.

Remark 3.3. The converse of the above Proposition 3.3 need not be true as shown in
the following example.

Example 3.7. In Example 3.3, (i) PFN(A) is PFNδPo set but PFNθint(PFN(A)) ̸=
0P , (ii) PFN(A) is PFNθSo set but PFNδcl(PFN(A)) ̸= 0P , (iii) PFN(A) is PFNθSo
set but not PFNδcs, (iv) PFN(A) is PFNMo set but not PFNδcs.

Theorem 3.4. S is a PFNMcs (resp. PFNMos) iff S = PFNMcl(S) (resp. S =
PFNMint(S)).

Proof. Suppose S = PFNMcl(S) =
⋂
{T : S ⊆ T & T is a PFNMcs}. This means

S ∈
⋂
{T : S ⊆ T & T is a PFNMcs} and hence S is PFNMcs.

Conversely, suppose S be a PFNMcs in U . Then, we have S ∈
⋂
{T : S ⊆ T & T is a

PFNMcs}. Hence, S ⊆ T implies S =
⋂
{T : S ⊆ T & T is a PFNMcs} = PFNMcl(S).

Hence S = PFNMint(S).

Theorem 3.5. Let S and T in U , then the PFNMcl have,

(i) PFNMcl(0P ) = 0P , PFNMcl(1P ) = 1P .
(ii) PFNMcl(S) is a PFNMcs in U .
(iii) PFNMcl(S) ⊆ PFNMcl(T ) if S ⊆ T .
(iv) PFNMcl(PFNMcl(S)) = PFNMcl(S).

Proof. The proofs are directly from definition 3.4 of PFNMc set.

Theorem 3.6. Let S and T in U , then the PFNMint have,

(i) PFNMint(0P ) = 0P , PFNMint(1P ) = 1P .
(ii) PFNMint(S) is a PFNMos in U .
(iii) PFNMint(S) ⊆ PFNMint(T ) if S ⊆ T .
(iv) PFNMint(PFNMint(S)) = PFNMint(S).

Proof. The proofs are directly from definition 3.4 of PFNMo set.

Proposition 3.4. Let S and T are in U , then

(i) PFNMcl(Sc) = [PFNMint(S)]c, PFNMint(Sc) = [PFNMcl(S)]c.
(ii) PFNMcl(S ∪ T ) ⊇ PFNMcl(S)∪PFNMcl(T ), PFNMcl(S ∩ T ) ⊆ PFNMcl(S)

∩PFNMcl(T ).
(iii) PFNMint(S ∪ T ) ⊇ PFNMint(S)∪PFNMint(T ), PFNMint(S ∩ T ) ⊆ PFNM

int(S) ∩ PFNMint(T ).

Proof.

(i) The proof is directly from definition 3.5.
(ii) S ⊆ S∪T or T ⊆ S∪T . Hence, PFNMcl(S) ⊆ PFNMcl(S∪T ) or PFNMcl(T ) ⊆

PFNMcl(S ∪ T ). Therefore, PFNMcl(S ∪ T ) ⊇ PFNMcl(S)∪PFNMcl(T ). The
other one is similar.

(iii) S ⊆ S∪T or T ⊆ S∪T . Hence, PFNMint(S) ⊆ PFNMint(S∪T ) or PFNMint(T )
⊆ PFNMint(S∪T ). Therefore, PFNMint(S∪T ) ⊇ PFNMint(S)∪PFNMint(T ).
The other one is similar.
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Proposition 3.5. If S is in U , then

(i) PFNMcl(S) ⊇ PFNcl(PFNδint(S)) ∩ PFNint(PFNθcl(S)).
(ii) PFNMint(S) ⊆ PFNcl(PFNθint(S)) ∪ PFNint(δcl(S)).

Proof.

(i) PFNMcl(S) is a PFNMcs and S ⊆ PFNMcl(S), then PFNMcl(S) ⊇ PFNcl
(PFNδint (PFNMcl(S))) ∩ PFNint(PFNθcl(PFNMcl(S)) ⊇ PFNcl(PFNδint
(S)) ∩ PFN (PFN θcl(S)).

(ii) PFNMint(S) is a PFNMos and S ⊇ PFNMint(S), then PFNMint(S) ⊆ PFNcl
(PFNθint (PFNMint(S)) ∪ PFNint(PFNδcl(PFNMint(S))) ⊆ PFNcl(PFNθ
int(S)) ∪ PFNint (PFNδcl(S)).

Theorem 3.7. Let S be in U , then

(i) PFNMcl(S) = PFNδPcl(S) ∩ PFNθScl(S),
(ii) PFNMint(S) = PFNδPint(S) ∪ PFNθSint(S).

Proof.

(i) It is obvious that, PFNMcl(S) ⊆ PFNδPcl(S) ∩ PFNθScl(S). Conversely, from
Definition 3.4, we have PFN Mcl(S) ⊇ PFNcl(PFNδint(PFNMcl(S)))∩PFNint
(PFNθcl (PFNMcl(S))) ⊇ PFNcl(PFNδint(S)) ∩ PFNint (PFNθcl(S)). Since,
PFNMcl(S) is PFNMcs, by Theorem 3.6, we have PFNδPcl(S)∩PFNθScl(S) =
S∪PFNcl(PFN δint(S))∩(S∪PFNint(PFNθcl(S))) = S∪(PFNcl(PFNδint(S))∩
PFNint(PFNθcl(S))) = S ⊆ PFNMcl(S). Therefore, PFNMcl(S) = PFNδP
cl(S) ∩ PFNθScl(S).

(ii) is similar from (i).

Theorem 3.8. Let S be in U . Then

(i) PFNMcl(1P − S) = 1P − PFNMint(S),
(ii) PFNMint(1P − S) = 1P − PFNMcl(S).

Proof.

(i) Let T be PFNMcs in U and S be any set in U . Then PFNMint(S) =
⋃
{1P − T :

1P −T ⊆ S, 1P −T is a PFNMos inU} = 1P −
⋂
{T : T ⊇ 1P −S, T is a PFNMcs

in U} = 1P − PFNMcl(S). Thus, PFNMcl(1P − S) = 1P − PFNMint(S).
(ii) Let T be PFNMos in U and S be any set in U . Then PFNMcl(S) =

⋂
{1P−T : 1P−

T ⊇ S, 1P−T is a PFNMcs in U} = 1P−∪{T : T ⊆ 1P−S, T is a PFNMos in U}
= 1P − PFNMint(S). Thus, PFNMint(1P − S) = 1P − PFNMcl(S).

Lemma 3.1. Let (U, τR(A)) be PFNts and S be a pfs on U . Then the following state-
ments are hold.

(i) PFNPint(PFNδPcl(S)) = PFNδPcl(S)∩PFNint(PFNcl(S)) and PFNPcl(PF
NδPint(S)) = PFNδPint(S) ∪ PFNcl(PFNint(S)).

(ii) PFNθPint(PFNδPcl(S)) = PFNδPcl(S) ∩ PFNint(PFNθcl(S)) and PFNθPcl
(PFNδPint(S)) = PFNδP int(S) ∪ PFNcl(PFNθint(S)).

(iii) PFNθScl(PFNθint(S)) = PFNScl(PFNθint(S)) = PFNint(PFNcl(PFNθint
(S))).

Proof. Obvious.

Proposition 3.6. Let S be in U , then

(i) PFNMcl(S) = S ∪ PFNθPint(PFNδPcl(S)).
(ii) PFNMint(S) = S ∩ PFNθPcl(PFNδPint(S)).
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Proof.

(i) By Lemma 3.1

S ∪ PFNθPint(PFNδPcl(S)) = S ∪ (PFNδPcl(S) ∩ PFNint(PFNθcl(S)))

= (S ∪ PFNδPcl(S)) ∩ (S ∪ PFNint(PFNθcl(S)))

= PFNδPcl(S) ∩ PFNθScl(S)
= PFNMcl(S).

(ii) Obvious.

Theorem 3.9. Let S be in U , then the following are equivalent.

(i) S is an PFNMos.
(ii) S ⊆ PFNθPcl(PFNδPint(S)).
(iii) PFNθPcl(S) = PFNθPcl(PFNδPint(S)).

Proof. (i) → (ii): Let S be an PFNMos. Then by Theorem 3.6, S = PFNMint(S)
and by Proposition 3.6, S = S∩PFNθPcl(PFNδPint(S)) and hence, S ⊆ PFNθPcl(PF
NδPint(S)).

(ii) → (i): Let S ⊆ PFNθPcl(PFNδPint(S)). Then by Proposition 3.6, S ⊆ S ∩
PFNθPcl(PFNδPint(S)) = PFNMint(S). So, S ⊆ PFNMint(S) and hence, S is an
PFNMos.

(ii) → (iii): Let S ⊆ PFNθPcl(PFNδPint(S)). Then PFNθPcl(S) ⊆ PFNθPcl(PF
NδPint(S)) and hence, PFNθPcl(S) = PFNθPcl(PFNδPint(S)).

(iii) → (ii): Obvious

Theorem 3.10. Let S be in U , then the following are equivalent.

(i) S is an PFNMcs.
(ii) PFNθPint(PFNδPcl(S)) ⊆ S.
(iii) PFNθPint(S) = PFNθPint(PFNδPcl(S)).

Proof. (i) → (ii): Let S be an PFNMcs. Then by Theorem 3.5, S = PFNMcl(S) and
by Proposition 3.6, S = S ∩ PFNθPint(PFNδPcl(S)) and hence, S ⊇ PFNθPint(PF
NδPcl(S)).

(ii) → (i): Let S ⊇ PFNθPint(PFNδPcl(S)). Then by Proposition 3.6, S ⊇ S ∪
PFNθPint(PFNδPcl(S)) = PFNMcl(S). So, S ⊇ PFNMcl(S) and hence, S is an
PFNMcs.

(ii)→ (iii): Let S ⊇ PFNθPint(PFNδPcl(S)). Then PFNθPint(S) ⊇ PFNθPint(PF
NδPcl(S)) and hence, PFNθPint(S) = PFNθPint(PFNδPcl(S)).

(iii) → (ii): Obvious

4. Application

Entropy as a measure of fuzziness was first proposed by Zadeh [28]. Later many math-
ematicians defined several entropy measures. In this section, we focus on defining an
entropy measure for pfs that connects the degree of membership and non-membership.
Ss an example, we have applied the proposed entropy measure in the field of decision
making.

Definition 4.1. Let A = {< x, µA(x), λA(x)|x ∈ X} be a pfs in U . The new entropy
measure for A denoted by εpfs(A), is a function, εpfs : τpfs(U) → [0, 1] and is defined as

εpfs(A) = 1− 1
n

∑n
i=1(µA−λA)

2; for every‘xi ∈ A, where τpfs(U) denote the family of all
pfs’s on U .
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Example 4.1. To select the most suitable educational institution for specific courses,
we incorporate both qualitative and quantitative decision-making criteria. In particular,
we consider alumni feedback as well as online ratings and rankings provided by various
professional and educational organizations. These sources offer valuable insights into the
performance and reputation of institutions from multiple perspectives.

In this study, we focus on five educational institutions, denoted as I1, I2, I3, I4 and
I5, and evaluate them with respect to five different courses, labeled C1, C2, C3, C4 and
C5. The online ratings for each institution in each course category are collected and then
transformed into Pythagorean fuzzy sets, which allow for a more nuanced representation
of uncertainty, hesitation, and partial truth associated with subjective evaluations.

To facilitate decision-making and identify the optimal institution for each course, we
apply an entropy measure to assess the degree of fuzziness in the collected data. The
entropy measure serves as a tool to quantify the uncertainty inherent in the evaluations
and helps in selecting the institution that offers the highest clarity or confidence in terms of
course quality. Ultimately, the institution with the minimum fuzziness across the evaluated
criteria is identified as the most appropriate choice for each respective course.

Table 1. Ratings of the educational institutions based on the courses.

Course 1 (C1) Course 2 (C2) Course 3 (C3) Course 4 (C4) Course 5 (C5)
I1 < I1, C1; 0.4, 0.6 > < I1, C2; 0.3, 0.2 > < I1, C3; 0.1, 0.2 > < I1, C4; 0.4, 0.3 > < I1, C5; 0.1, 0.2 >
I2 < I2, C1; 0.7, 0.3 > < I2, C2; 0.2, 0.2 > < I2, C3; 0.0, 0.1 > < I2, C4; 0.7, 0.3 > < I2, C5; 0.1, 0.1 >
I3 < I3, C1; 0.3, 0.4 > < I3, C2; 0.6, 0.3 > < I3, C3; 0.2, 0.1 > < I3, C4; 0.2, 0.2 > < I3, C5; 0.1, 0.0 >
I4 < I4, C1; 0.1, 0.2 > < I4, C2; 0.2, 0.4 > < I4, C3; 0.8, 0.2 > < I4, C4; 0.2, 0.1 > < I4, C5; 0.2, 0.1 >
I5 < I5, C1; 0.1, 0.1 > < I5, C2; 0.0, 0.2 > < I5, C3; 0.2, 0.0 > < I5, C4; 0.2, 0.0 > < I5, C5; 0.8, 0.1 >

Clearly, all values in the Table 1 are PFs’s. Now we calculate the εPFs of each value.

Table 2. Entropy measure of each institutions for the different courses.

Course 1 (C1) Course 2 (C2) Course 3 (C3) Course 4 (C4) Course 5 (C5)
Institution 1 (I1) 0.96 0.99 0.99 0.99 0.99
Institution 2 (I2) 0.84 1 0.99 0.84 1
Institution 3 (I3) 0.99 0.91 0.99 1 0.99
Institution 4 (I4) 0.99 0.96 0.64 0.99 0.99
Institution 5 (I5) 1 0.96 0.96 0.96 0.51

From Table 2, it is clear that εPFNs(I2, C1) < εPFNs(I1, C1) < εPFNs(I3, C1) ≤
εPFNs(I4, C1) < εPFNs(I5, C1)

Similarly
εPFNs(I3, C2) < εPFNs(I4, C2) ≤ εPFNs(I5, C2) < εPFNs(I1, C2) < εPFNs(I2, C2)
εPFNs(I4, C3) < εPFNs(I5, C3) < εPFNs(I1, C3) ≤ εPFNs(I2, C3) ≤ εPFNs(I3, C3)
εPFNs(I2, C4) < εPFNs(I5, C4) < εPFNs(I1, C4) ≤ εPFNs(I4, C4) < εPFNs(I3, C4)
εPFNs(I5, C5) < εPFNs(I1, C5) ≤ εPFNs(I3, C5) ≤ εPFNs(I4, C5) < εPFNs(I2, C5).
It is clear that Institution 2 is best for the course C1 and C4, Institution 3 is best for

the course C2, Institution 4 is best for the course C3 and Institution 5 is best for the
course C5.

5. Conclusion

We have studied about Pythagorean fuzzy M -open set and Pythagorean fuzzy M -closed
set and their respective interior and closure operators in Pythagorean fuzzy Topological
Space in this paper. Also we have studied some of their fundamental properties along with
examples in PFNts. Moreover, we have discussed about near open sets of Pythagorean
fuzzy M -open sets in PFNts. In future, we can extend these results to Pythagorean
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fuzzy M - continuous mappings, Pythagorean fuzzy M -open mappings and Pythagorean
fuzzy M -closed mappings in PFNts. We present ameasure of entropy and one application
related to it. This measure is consistent with similar considerations for other sets like fuzzy
sets and Pythagorean fuzzy sets etc. Hence the proposed entropy measure can be used to
measure the uncertainty factor in related problems.
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