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FIXED POINTS OF CONTRACTIVE SET VALUED MAPPINGS WITH

SET VALUED DOMAINS ON A METRIC SPACE WITH GRAPH

P. DEBNATH1, §

Abstract. In this article we consider general contractive mappings of the form F :
CB(X) → CB(X), where CB(X) is the set of all nonempty closed and bounded subsets
of a complete metric space X endowed with a graph G. We prove some fixed point results
for F and discuss how the connectivity of the graph G is related to the fixed points of
F .
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1. Introduction

Some important works on fixed point theorems for set valued and multivalued contrac-
tion mappings were carried out by Nadler [8] and Assad and Kirk [2]. The concepts of
fixed point theory and graph theory were combined by Espinola and Kirk [4] to prove some
interesting fixed point theorems in R-trees. Jachymski [5, 7] used similar type of combi-
nation to extend the works of Ran and Reurings [12], Nieto and Rodŕıguez-López [10],
Petruşel and Rus [11], Nieto, Pouso and Rodŕıguez-López [9] on fixed point theory. Some
fixed point results on a metric space with a graph has been recently investigated by Beg
et al. [3] and Aleomraninejad et al. [1].

The results on set-valued and multi-valued contractions on a metric space with graph
are generalizations of their single-valued analogues. An example in this direction is the
work of Beg et al. [3]. But to obtain similar results as that of single-valued contractions,
the definition of a contraction map F : X → CB(X) (see [3]) was slightly modified than
its single-valued counterpart given by Jachymski [7].

Our motivation and objective for considering mappings F : CB(X) → CB(X) instead
of F : X → X or F : X → CB(X) is to investigate the necessary changes that have
to be made in the definition of a contraction map in this new setting in order to obtain
similar results. Also we investigate how the proofs of our results are influenced due to
these changes. Knowledge of such generalized results can help us to study the convergence
of some iterative scheme to the unique fixed point in this context.

For graph theoretic notations and terminologies, the readers are referred to Hararay [9].
In a metric space (X, d), two sequences {xn} and {yn} are said to be equivalent if

d(xn, yn) → 0 and they are said to be Cauchy equivalent if they are equivalent as well as
Cauchy.
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Let (X, d) be a complete metric space and CB(X) be the class of all nonempty closed
and bounded subsets of X. For A,B ∈ X, let

D(A,B) = max{sup
b∈B

d(b, A), sup
a∈A

d(a,B)},

where d(a,B) = infb∈B d(a, b). Then (CB(X), D) is a metric space and D is said to be a
Hausdorff metric induced by d.

Let (X, d) be a metric space and ∆ = {(x, x) : x ∈ X} denote the diagonal of the
Cartesian product X ×X. Consider a directed graph G such that the set of its vertices
coincides with X (i.e., V (G) = X) and the set of its edges E(G) is such that ∆ ⊆ E(G).
We assume G has no parallel edges and thus we identify G with the pair (V (G), E(G)).

G−1 denotes the conversion of a graph G, the graph obtained from G by reversing the

direction of edges of G. G̃ denotes the undirected graph obtained from G by ignoring the
directions of the edges of G. We consider G as a directed graph whose set of edges is
symmetric, thus we have

E(G̃) = E(G) ∪ E(G−1).

If x, y ∈ V (G), then a path in G from x to y is a sequence {xi}ni=0 of vertices such that
x0 = x, xn = y and (xi−1, xi) ∈ E(G) for i = 1, 2, . . . , n.

A graph G is connected if there is a path between any two vertices of G. G is said to

be weakly connected if G̃ is connected. We call a subset A ⊂ X locally connected if there
exists a path between any two points of A. By convention we say that every singleton set
in X is locally connected because ∆ ⊂ E(G).

If G is such that E(G) is symmetric and x is a vertex in G, then the subgraph Gx

consisting of all edges and vertices which are contained in some path beginning at x is
called the component of G containing x. In this case V (Gx) = [x]G, where [x]G is the
equivalence class of the following relation P defined on V (G) by the rule:

yPz if there is a path in G from y to z.

2. Fixed points of contractive set valued mappings with set valued
domains

Let A,B ⊆ X. By the statement ‘there is an edge between A and B’, we mean there is
an edge between some x ∈ A and y ∈ B. Again the meaning of the statement ‘there is a
path between A and B’ is that there is a path between some x ∈ A and y ∈ B.

In CB(X) we define a relation R in the following way:
For A,B ∈ CB(X), ARB ⇔ there is a path between A and B.
For A ∈ CB(X), the equivalence class of R is denoted and defined by

[A]G = {B ⊆ X : ARB}.

Remark 2.1. To study the mappings F : CB(X) → CB(X) there can be two approaches:
(i) We can equip CB(X) with a graph and (ii) First we equip X with a graph and then
consider the induced graph structure on CB(X). In the present paper we have adopted the
second approach. And in this case, in fact, both the approaches are equivalent because of
the definition of the relation R on CB(X). Thus if we equip CB(X) with a graph, this in
turn equips X with the same graph and conversely.

For the rest of this paper, byX we mean a complete metric space (X, d) unless otherwise
stated.

Definition 2.1. Let F : CB(X) → CB(X) be a set valued mapping with set valued
domain. The mapping F is said to be a G-contraction if the following conditions hold:
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(i) There is an edge between A and B ⇒ there is an edge between F (A) and F (B) for
all A,B ∈ CB(X).

(ii) There is a path between A and B ⇒ there is a path between F (A) and F (B) for all
A,B ∈ CB(X).

(iii) There exists k ∈ (0, 1) such that there is an edge between A and B ⇒ D(F (A), F (B)) ≤
kD(A,B) for all A,B ∈ CB(X).

Definition 2.2. Let F : CB(X) → CB(X) be a set valued mapping with set valued
domain. A ∈ CB(X) is said to be a fixed point of F if F (A) = A.

The set of all fixed points of F is denoted by Fix F .

Example 2.1. (i) Any constant function F : CB(X) → CB(X) is a G-contraction for
∆ ⊂ E(G).

(ii) Any G-contraction is a G0-contraction, where the graph G0 is defined by E(G0) =
X ×X.

The following proposition follows immediately from the symmetry of D and the defini-

tion of G̃.

Proposition 2.1. If F : CB(X) → CB(X) is a G-contraction, then F is both a G̃-
contraction and a G−1-contraction.

Lemma 2.1. Let F : CB(X) → CB(X) be a G-contraction with constant k ∈ (0, 1).
Then given A ∈ CB(X) and B ∈ [A]G̃, there exists r(A,B) > 0 such that

D(Fn(A), Fn(B)) ≤ knr(A,B) for all n ∈ N.

Proof. Let A ∈ CB(X) and B ∈ [A]G̃. So, there exists a path (xi)
n
i=0 from x to y for

some x ∈ A and y ∈ B, i.e., x0 = x and xn = y and (xi−1, xi) ∈ E(G̃) for i = 1, 2, . . . , n
such that x0 ∈ A0 = A, x1 ∈ A1, . . ., xn ∈ An = B, where each Ai ∈ CB(X). By

Proposition 2.1, F is a G̃-contraction.
Thus for i = 1, 2, . . . , n, we have

D(F (Ai−1), F (Ai)) ≤ kD(Ai−1, Ai);

D(F 2(Ai−1), F
2(Ai)) ≤ kD(F (Ai−1), F (Ai)

≤ k2D(Ai−1, Ai);

and continuing this way, we obtain

D(Fn(Ai−1), F
n(Ai)) ≤ knD(Ai−1, Ai).

Now by triangle inequality, we have

D(Fn(A), Fn(B)) ≤
n∑

i=1

D(Fn(Ai−1), F
n(Ai))

≤ kn
n∑

i=1

D(Ai−1, Ai)

= knr(A,B), where r =
n∑

i=1

D(Ai−1, Ai).

�
The next theorem illustrates how the connectivity of the graph G is related to the fixed

points of F .
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Theorem 2.1. The following statements are equivalent:

(i) G is weakly connected.
(ii) For any G-contraction F : CB(X) → CB(X), given A,B ∈ CB(X), the sequences

{Fn(A)} and {Fn(B)} are Cauchy equivalent.
(iii) For any G-contraction F : CB(X) → CB(X), card(Fix F ) ≤ 1.

Proof. (i) ⇒ (ii): Let F be a G-contraction and A,B ∈ CB(X). By the hypothesis,
CB(X) ⊆ [A]

G̃
= P (X), where P (X) denotes the power set of X and so, F (A) ∈ [A]

G̃
.

By Lemma 2.1, we have

D(Fn(A), Fn+1(A)) ≤ knr(A,F (A)) for all n ∈ N.
Hence

∑∞
n=0D(Fn(A), Fn+1(A)) < ∞ and as such, D(Fn(A), Fn+1(A)) → 0. Thus

{Fn(A)} is a Cauchy sequence. Also since B ∈ [A]
G̃
, again by Lemma 2.1, we have

D(Fn(A), Fn(B)) ≤ knr(A,B) for all n ∈ N.
Therefore,

∑∞
n=0D(Fn(A), Fn(B)) < ∞ and so, D(Fn(A), Fn(B)) → 0. Thus the se-

quences {Fn(A)} and {Fn(B)} are equivalent. Since {Fn(A)} is Cauchy, it is obvious
that {Fn(B)} is Cauchy as well.

(ii) ⇒ (iii): Let F be a G-contraction and A,B ∈ Fix F . By (ii) we have,
D(Fn(A), Fn(B)) → 0. But F (A) = A and F (B) = B and therefore, we must have A = B.

(iii) ⇒ (i): Let G̃ be not connected. Let A0 ∈ CB(X) such that A0 = [x0]G̃ for some
fixed x0 ∈ X. Then both [A0]G̃ and CB(X) \ [A0]G̃ are nonempty.

Let B0 ∈ CB(X) \ [A0]G̃ such that there is a path between any two points of B0 (if B0

is a singleton set, we can use the fact that ∆ ⊆ E(G)). Define H : CB(X) → CB(X) by

H(U) =

{
A0 if U ∈ [A0]G̃
B0 if U ∈ CB(X) \ [A0]G̃.

Clearly, Fix H = {A0, B0}. We show that H is a G-contraction. Let A,B ∈ [A0]G̃ such
that there is an edge (path) between A and B. Then [A]G̃ = [B]G̃, so either A,B ∈ [A0]G̃
or A,B ∈ CB(X) \ [A0]G̃. In both the cases we have F (A) = F (B). Thus there exists an
edge (path) between H(A) and H(B) for A0 and B0 both are locally connected.

Also we have D(F (A), F (B)) = 0 ≤ 1
2D(A,B). Thus H is a G-contraction having two

fixed points which violates (iii). �
The following is an immediate consequence of Theorem 2.1.

Corollary 2.1. Let (CB(X), D) be complete. The following statements are equivalent:

(i) G is weakly connected.
(ii) For any G-contraction F : CB(X) → CB(X), there is U ∈ CB(X) such that

limn→∞ Fn(Y ) = U for all Y ∈ CB(X).

Theorem 2.2. Let F : CB(X) → CB(X) be a G-contraction and A0 ∈ CB(X) such

that x0 ∈ A0 for some x0 ∈ X. Let F (A0) ∈ [A0]G̃ and G̃x0 be the component of CB(X)

containing x0. Then [A0]G̃ is F -invariant and F |[A0]G̃
is a G̃x0-contraction. Also if U, V ∈

[A0]G̃, then the sequences (Fn(U)) and (Fn(V )) are Cauchy equivalent in the metric space
(CB(X), D).

Proof. Let A ∈ [A0]G̃. Then there exists a path (xi)
n
i=0 in G̃ from A0 to A such that

x0 ∈ A0, x1 ∈ A1,. . ., xn ∈ An = A, where each Ai ∈ CB(X). Since F is a G̃-contraction
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(by Proposition 2.1), clearly, there is a path from F (A0) to F (A). Thus F (A) ∈ [F (A0)]G̃.
Since by hypothesis, F (A0) ∈ [A0]G̃, i.e., [F (A0)]G̃ = [A0]G̃, we have that F (A) ∈ [A0]G̃.
Thus [A0]G̃ is F -invariant.

Let V (G̃x0) = Y ⊂ X. Clearly, A0 ∈ CB(Y ). Consider A,B ∈ CB(Y ) such that
there is an edge (path) between A and B. This implies that A,B ∈ [A0]G̃. Since [A0]G̃ is

F -invariant, we have F (A), F (B) ∈ [A0]G̃. Again using the fact that F is a G̃-contraction,
we have that there is an edge (path) between F (A) and F (B).

Moreover, since E(G̃x0) ⊆ E(G̃) and F is a G̃-contraction, we must get a k ∈ (0, 1)
such that

D(F (A), F (B)) ≤ k(D(A,B)).

Thus F |[A0]G̃
is a G̃x0-contraction.

Finally, since G̃x0 is connected, from Theorem 2.1, it follows that if U, V ∈ [A0]G̃, then
the sequences (Fn(U)) and (Fn(V )) are Cauchy equivalent. �

Theorem 2.3. Let (CB(X), D) be complete with the following properties:
(a) For any sequence {Un} in CB(X), if Un → U such that there is an edge between

Un and Un+1 for n ∈ N, then there is a subsequence {Ukn} with an edge between Ukn and
U for n ∈ N.

(b) The relation R on CB(X) is transitive. In terms of the graph G it means that if
there is a path between A & B and there is a path between B & C, then there is a path
between A & C as well.

Let F : CB(X) → CB(X) be a G-contraction and

XF = {U ∈ CB(X) : there is an edge between U and F (U)}.

Then the following statements hold:

(i) For any U ∈ XF , F |[U ]
G̃
has a unique fixed point.

(ii) If XF ̸= ϕ and G is weakly connected, then F has a unique fixed point.

(iii) If X
′
= {[U ]

G̃
: U ∈ XF }, then F |X′ has a fixed point.

(iv) If F ⊆ E(G) then F has a fixed point.
(v) Fix F ̸= ϕ if and only if XF ̸= ϕ.

Proof. (i) Let U ∈ XF . Then F (U) ∈ [U ]
G̃
. By Theorem 2.2, if V ∈ [U ]

G̃
, then {Fn(U)}

and {Fn(V )} are Cauchy equivalent. Since (CB(X), D) is complete, we have Fn(U) → U∗

for some U∗ ∈ CB(X). Clearly, Fn(V ) → U∗. Since there exists an edge between U and
F (U), the fact that F is a G-contraction yields there is an edge between Fn(U) and
Fn+1(U) for all n ∈ N.

By hypothesis, there exists a subsequence {F kn(U)} such that there is an edge between
F kn(U) and U∗ for every n ∈ N. Using transitivity of the relation R, we infer that there

is a path in G (and hence also in G̃) between U and U∗. Thus U∗ ∈ [U ]
G̃
.

Moreover, there exists k ∈ (0, 1) such that

D(F kn+1(U), F (U∗)) ≤ kD(F kn(U), U∗).

But F kn(U) → U∗ and so, D(F kn(U), U∗) → 0. Thus D(F kn+1(U), F (U∗)) → 0, i.e.,
F kn+1(U) → F (U∗) = U∗. Clearly, U∗ is the unique fixed point of F |U

G̃
.

(ii) If G is weakly connected, then [U ]
G̃
= CB(X). Therefore, it follows from (i) that

F has a unique fixed point.
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(iii) It follows immediately from (i).

(iv) F ⊆ E(G) means that all U ∈ CB(X) are such that there exists an edge between

U and F (U). Therefore, X
′
= CB(X). From (iii) it follows that F has a fixed point.

(v) Let Fix F ̸= ϕ. Then there exists U ∈ CB(X) such that F (U) = U . Since
∆ ⊂ E(G) and U is nonempty, we conclude that XF ̸= ϕ. The converse follows from (ii)
and (iii). �
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