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SIMILAR RULED SURFACES WITH VARIABLE TRANSFORMATIONS
IN MINKOWSKI 3-SPACE E?}

MEHMET ONDER! §

ABSTRACT. In this study, we consider the notion of similar ruled surface for timelike and
spacelike ruled surfaces in Minkowski 3-space Fj. We obtain some properties of these
special surfaces in F} and show that developable ruled surfaces in E3 form a family of
similar ruled surfaces if and only if the striction curves of the surfaces are similar curves
with variable transformation. Moreover, we obtain that cylindrical surfaces and conoids
form two families of similar ruled surfaces in E3.
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1. INTRODUCTION

In the curve theory, special curve pairs for which at the corresponding points of the
curves one of the Frenet vectors of a curve coincides with one of the Frenet vectors of
other curve, are very interesting and an important problem of the differential geometry.
Bertrand curves, Mannheim curves and involute-evolute curves are the well-known types
of such curves and studied extensively [6,14,17]. Recently, a new definition of the special
curves was given by El-Sabbagh and Ali [2]. They have called these new curves as similar
curves with variable transformation and defined as follows: Let 1, (s4) and 13(sg) be
two regular curves in E® parameterized by arc lengths s, and sg with curvatures kg,

kg and torsions 7,, 73 and Frenet frames {fa,ﬁa,éa} and {fg,ﬁg,ég}. Ya(Sa) and

Yg(sp) are called similar curves with variable transformation A3 if there exists a variable
transformation

So = /Ag(s[g)dsB,

of the arc lengths such that the tangent vectors are the same for two curves i.e., T, = fﬂ
for all corresponding values of parameters under the transformation A3- They have called
all curves satisfying this condition as a family of similar curves. Moreover, they have
obtained some properties of the family of similar curves.

Furthermore, the surface pairs especially ruled surface pairs (called offset surfaces)
have an important positions and applications in the study of design problems in spatial
mechanisms and physics, kinematics and computer aided design (CAD) [11,12]. So, these
surfaces are one of the most important topics of surface theory. In fact, ruled surface
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offsets are the generalizations of the notion of Bertrand curves, Mannheim curves and
similar curves to the line geometry and these surface pairs are called Bertrand offsets,
Mannheim offsets and similar ruled surfaces, respectively [5,8,9,13].

In this work, we introduce timelike and spacelike similar ruled surfaces in Minkowski
3-space E3. We give some theorems characterizing these special surfaces and we show that
developable ruled surfaces in E5 form a family of similar ruled surfaces if and only if the
striction curves of the surfaces are similar curves with variable transformation.

2. PRELIMINARIES

Let E3 be a Minkowski 3-space with natural Lorentz Metric
(,) = —dx} + dz3 + da3,

where (1,72, 23) is a rectangular coordinate system of Fj. According to this metric, in
Ei)’ an arbitrary vector ¥ = (v1, v2, v3) can have one of three Lorentzian causal characters;
it can be spacelike if (7,¥) > 0 or ¥ = 0, timelike if (¢,7) < 0 and null (lightlike) if
(U,7) = 0 and ¢ # 0 [7]. Similarly, an arbitrary curve & = @(s) can locally be spacelike,
timelike or null (lightlike), if all of its velocity vectors @'(s) are spacelike, timelike or null
(lightlike), respectively. For the vectors & = (x1,22,73) and ¥ = (y1,¥2,¥3) in E}, the
vector product of Z and ¢ is defined by

TNY = (T2y3 — T3Y2, T1Y3 — T3Y1, T2Y1 — T1Y2).
The Lorentzian sphere and hyperbolic sphere of radius r and center origin in E? are
given by
St ={% = (z1,22,23) € E} : (Z,%) =r?},
and
HE = {f: (z1,19,23) € B} : (&%) = —r2},
respectively [10,16].

Analogue to the curves, a surface can be timelike or spacelike in E$. A surface in the
Minkowski 3-space Ef is called a timelike surface if the induced metric on the surface is
a Lorentz metric and is called a spacelike surface if the induced metric on the surface is a
positive definite Riemannian metric. Note that the normal vector on spacelike (timelike)
surface is a timelike (spacelike) vector [1].

3. TIMELIKE AND SPACELIKE RULED SURFACES IN MINKOWSKI 3-SPACE

Let I be an open interval in the real line IR. Let k = E(u) be a curve in E} defined
on I and ¢ = §(u) be a unit direction vector of an oriented line in E. Then we have the
following parametrization for a ruled surface N,

Bluyv) = R(u) + v glu). (1)
The parametric u-curve of this surface is a straight line of the surface which is called
ruling. For v = 0, the parametric v-curve of this surface is k= E(u) which is called base
curve or generating curve of the surface. In particular, if the direction of ¢ is constant,

the ruled surface is said to be cylindrical, and non-cylindrical otherwise.
The distribution parameter (or drall) of the ruled surface in (1) is given as

‘dﬁ, 7 d(j
% = iz i )

([4]). Then the normal vectors are collinear at all points of same ruling and at nonsingular
points of the surface N, the tangent planes are identical. We then say that tangent
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plane contacts the surface along a ruling. Such a ruling is called a torsal ruling. If
‘dlz, q, dcf‘ # 0, then the tangent planes of the surface IV are distinct at all points of same

ruling which is called nontorsal [10,16].

For the unit normal vector m of the ruled surface IV, we have m =
points of a nontorsal ruling u = u; we have
a= lim m(uy,v) = M
v—09 1dq]

The point at which the unit normal of N is perpendicular to @ is called the striction point
(or central point) C' and the set of striction points of all rulings is called striction curve
of the surface. The parametrization of the striction curve ¢ = ¢(u) on a ruled surface is

given by
_ (dq, dF)
cu) = k(u) — ﬁiqﬁ, 3
() = Fo) = Yo 3)
[10,15,16]. So that, the base curve of the ruled surface is its striction curve if and only if
<ch, dl%’> —0.

The vector A defined by h = =+ax q is called central normal which is the surface normal

along the striction curve. Then the orthonormal system {C A H, cT,} is called Frenet frame

—

of the ruled surfaces N where C' is the central point of ruling of N and ¢, h = +a x q, a
are unit vectors of ruling, central normal and central tangent, respectively.

Now, let us consider the ruled surface N. According to the Lorentzian casual characters
of ruling and central normal, we can give the following classifications of the ruled surface
N;

i) If the central normal vector h is spacelike and ¢ is timelike, then the ruled surface N
is said to be of type N_.

ii) If the central normal vector h and the ruling ¢ are both spacelike, then the ruled
surface N is said to be of type N,.

iii) If the central normal vector h is timelike, then the ruled surface N is said to be of
type Nx [10,16].

The ruled surfaces of type N and N_ are clearly timelike and the ruled surface of type
Ny is spacelike. (For a more general classifications of ruled surfaces see [3]). By using
these classifications and taking the striction curve as the base curve, the parametrization
of the ruled surface N can be given as follows,

(s, v) = &(s) +vqls), (4)
where (¢, q) = € (= £1), <i_i, E> = +1 and s is the arc length of the striction curve.

For the derivatives of the vectors of Frenet frame {C’ 5 l_i, d’}of ruled surface N with

respect to the arc length s of striction curve we have the followings
i) If the ruled surface N is a timelike ruled surface then we have

dq/ds 0 ki 0 q
dh/ds | = | —ek1 0 ko h|, (5)
di/ds 0 cko O a
and . B =
GgXxh=¢ed, hxd=—ef, dxq§=—h, (6)

[See 10].
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ii) If the ruled surface N is spacelike ruled surface then we have

dq/ds 0 k 077
dﬁ/ds =\ ki 0 ko E s (7)
da/ds 0 k 0 || a
and
Gxh=—-d hxda=—q§ axq=h, (8)
[See 16].
In the equations (5) and (7), k1 = %, ko = %3 and s, s3 are the arc lengths of

the spherical curves circumscribed by the unit vectors ¢ and d, respectively. Moreover,
timelike and spacelike ruled surfaces satisfying k1 # 0, ko = 0 are called timelike and
spacelike conoids in E3, respectively [10,16].

Now, we can represent and prove the following theorems which are necessary for the
following sections.

Theorem 3.1. Let the striction curve ¢ = &(s) of ruled surface N be a unit speed curve
with same Lorentzian casual character with the ruling and let ¢(s) also be the base curve
of the surface. Then N is developable if and only if the unit tangent of the striction curve
1s the same with the ruling along the curve.

Proof. Let N be a timelike ruled surface and let s be arc length parameter of the striction
curve. Then the unit tangent of the striction curve is given by

—
—

T(s) = % = (cosh 0)q(s) + (sinh 0)d(s),

where 6 = 0(s) is the angle between unit vectors T'(s) and ¢(s) [10]. Since the striction
curve is taken as base curve, from (2) and (5) the distribution parameter of the surface N
is obtained as
sinh 0

ky
Thus we have that timelike ruled surface N is developable if and only if T(s) = (s)
satisfies.

If N is a spacelike ruled surface then the unit tangent of the striction curve is given by

d=—

—

T(s) = % = (cos 0)q(s) + (sinB)a(s),

(See [16]). Then from (2) and (5) the distribution parameter of the surface N is obtained

as )
sin 6

d= .
ki1
Thus we have that spacelike ruled surface N is developable if and only if T(s) = q(s)
satisfies.

O

Theorem 3.2. Let the striction curve ¢ = ¢(s) of ruled surface N be unit speed i.e., s
is arc length parameter of ¢(s). Suppose that ¢ = &(p) is another parametrization of the
striction curve by the parameter p(s) = [ki(s)ds. Then the ruling § satisfies a vector
differential equation of third order given by

d (_1_dq 1-f2() | d7 _ 1L df@\>_0 4 C g T

do \ 7o) df2 + € ( é(¢) ) dp € (fz(go) o ) G=0; if N is timelike, )
d (_1_d*q) _ (1+/7°(p) | dq 1 d@\z_0. 5 ; ;

dp \ (o) dp? ( i) ) dp T <f2(<p) o ) qd=0; if N is spacelike,
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where f(p) = Zigg

Proof. Let N be a timelike ruled surface. If we write derivatives given in (5) according to
v, we have

dqgd -
a_y
dy
dh
% = _EJ+ f((p)av
da -
= cf(e)h
d(p Ef((lo) Y
respectively, where f(p) = ngg; Then corresponding matrix form of (5) can be given
dq/de 0 1 0 q
dhjde | =| - 0  flo) || h]. (10)
da/de 0 ef(p) O a
From the first and second equations of new Frenet derivatives (10) we have
.1 (&7 >
i=— (22 4 o). 11
f(p) (dwz ()

Substituting the above equation in the last equation of (10) we have the first equation of
(9).
If N is a spacelike ruled surface, then considering Frenet formulae (7) and following the
same procedure we have the second equation of (9) immediately.
O

4. TIMELIKE SIMILAR RULED SURFACES IN MINKOWSKI 3-SPACE E}

In this section we introduce the definition and characterizations of timelike similar ruled
surfaces with variable transformation in E3. First, we give the following definition.

Definition 4.1. Let N, and Ng be two timelike ruled surfaces of the same type in E}
given by the parametrizations

Ta(Sasv) = d(sa) + v qa(sa), [Gall =1

a 3 - - (12)

T5(sp,v) = Bsg) +vqs(sp), gl =1
respectively, where d(sq) and 5(5/3) are striction curves of No and Ng and s., sg are arc
length parameters of d(sa) and 5(35), respectively. Let the Frenet frames and invariants
of No and Ng be {cj’a,ﬁa,é’a}, kS, kS and {(j’g,ﬁg,&g}, k"f, k:g, respectively. N, and
Ng are called timelike similar ruled surfaces with variable transformation )\g if there exists
a variable transformation

S0 = / X3 (55)dss, (13)
of the arc lengths such that the rulings are the same for two ruled surfaces i.e.,
Ja(sa) = Cjb(Sﬁ), (14)

for all corresponding values of parameters under the transformation AG- All timelike ruled

surfaces satisfying equation (14) are called a family of timelike similar ruled surfaces with
variable transformation.
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Then we can give the following theorems characterizing timelike similar ruled sur-
faces. Whenever we talk about N, and Ng, we mean that the surfaces regular and have
parametrizations given in (12).

Theorem 4.1. Let N, and Ng be two timelike ruled surfaces in Ei)’ Then N, and Ng
are timelike similar ruled surfaces with variable transformation if and only if the central
normal vectors of the surfaces are the same, i.e.,

ha(soc) = hﬁ(sﬂ)’ (15)
under the particular variable transformation
dsq K}
A& = 2 M 16
A d55 k‘f" (16)

of the arc lengths.

Proof. Let N, and Ng be two timelike similar ruled surfaces in E} with variable transfor-
mation. Then differentiating (14) with respect to sg it follows

kXS = k| Rg. (17)

From (17) we obtain (15) and (16) immediately.
Conversely, let N, and Nj be two regular timelike ruled surfaces in E} satisfying (15)

and (16). By multiplying (15) with klﬂ and differentiating the result with respect to sg,
we have

[ sTiatsadss = [ K (ss)a(5) 2 ds 9
From (15) and (16) we obtain
(s = [ K s5)alsa)dss = [ 17 (s )ha(s0)d50 = da(sa), (19)

which means that N, and Ng are timelike similar ruled surfaces with variable transfor-
mation.

0

Theorem 4.2. Let N, and Ng be two timelike ruled surfaces in Ei” Then N, and Ng are
timelike similar ruled surfaces with variable transformation if and only if the asymptotic
normal vectors of the surfaces satisfy the following equality

A (Sa) = €agpdp(sp), (20)
under the particular variable transformation
dso Kb
MNj=—"=2 21
P dsg kS’ (21)

of the arc lengths, where e = (Qn, ) = £1, €3 = (3, q3) = 1.

Proof. Let N, and Ng be two timelike similar ruled surfaces in E} with variable transfor-
mation. Then from Definition 4.1 and Theorem 4.1 there exists a variable transformation
of the arc lengths such that the rulings and central normal vectors are the same. Then
from (14) and (15) we have

— —

a(sa) = <o (dals0) X Fia(sa) ) = ca (T(59) x Fip(s9)) = cacplalsa).  (22)
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Conversely, let N, and Nz be two timelike ruled surfaces in E? satisfying (20) and (21).
By differentiating (20) with respect to sg, it follows

o - dsq -
2ok (s0)ha(s0) o> = 2ass (2ks (s5)ha(ss) ) (23)
B
which gives us
Koo -
A% = o ha(sa) = hp(sp)- (24)
2

Then from (20) and (24) we have

—

Go(8a) = —€aha(sa) X Ga(sa) = —€a <5a5555(35) X dﬁ(‘%)) = —Sgﬁg(sm X dp(sp)

= qp(sp)
(25)
which completes the proof.
O

Theorem 4.3. Let N, and Ng be two timelike ruled surfaces in E% Then N, and Ng
are timelike similar ruled surfaces with variable transformation if and only if the ratio of
curvatures are the same i.e.,

Ky (s5) _ kS (sa)
K (s5)  KT(sa)’

under the particular variable transformation keeping equal total curvatures, i.e.,

pals) = [ K(ss)dsa = [ Ki(sa)dse = ealsu) (27)

(26)

of the arc lengths.

Proof. Let N, and Ng be two timelike similar ruled surfaces in E$ with variable trans-
formation. Then from (21) and (24) we have (26) under the variable transformation (27),
and this transformation also leads from (21) by integration.

Conversely, let N, and N3 be two timelike ruled surfaces in E$ satisfying (26) and (27).
From Theorem 3.2, the rulings ¢, and ¢z of the surfaces N, and Ng satisfy the following
vector differential equations of third order

d 1 deTa) (1—f§(soa)) dGe ( 1 dfa(gpa)) L
dpa <f04(9004) d?, Tea fa(pa) dpa o f2(pa)  dpa @ =0 (28)

d 1 d%g; 1—f3(ep)\ dgs 1 dfs(ep) ) .
_ —0, (29
dos <fﬁ(90ﬁ) dst%) e ( Toles) ) dvs~ "\ Fes) des )T 2

respectively, where

a g
folpa) = ey Ioos) = 5 20 puton) = [ ioa)tsasiston) = [ K (os)iss.

From (26) we have fo(va) = f3(¢s) under the variable transformation ¢, = ¢g. Thus
under the equation (26) and transformation (27), the equations (28) and (29) are the same,
i.e., they have the same solutions. It means that the rulings ¢, and g are the same. Then
N, and Nz are two timelike similar ruled surfaces in E$ with variable transformation.

O
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Theorem 4.4. Let timelike ruled surfaces N, and Ng be developable surfaces and let the
striction lines have the same Lorentzian characters with the rulings. Then N, and Ng
are timelike similar ruled surfaces with variable transformation if and only if the striction
curves of surfaces are similar curves with variable transformation.

Proof. Let developable timelike ruled surfaces N, and Ng be two timelike similar ruled
surfaces in Fj with variable transformation. Since the surfaces are developable, from
Theorem 3.1 we have

dad B g B

mﬁ:fu%>:%w@,¢i= 5(55) = Ta(s9). (30)
where Th(sq) and fﬁ(s/g) are unit tangents of the striction curves d(s,) and 5(35), re-
spectively. From (14) and (30) we have

da df

—— = Ga(Sa) = q5(sp)

ds. (31)

- dsg’
which shows that striction curves @(sq) and 3 (sp) are similar curves in E}.
Conversely, if the striction curves @(s,) and Ji (sp) are similar curves, then there exists
a variable transformation between arc lengths such that
da L dg

Fr fa(sa) = T(sp) = dsg’

dsa (32)

Since the ruled surfaces are developable, from Theorem 3.1 we have Th(sq) = Ga(sq) and
T3(sg) = ¢z(sg). Then from (32) we have that ¢n(sa) = ¢3(sg), i.e., No and Ng are
timelike similar ruled surfaces with variable transformation.

O

Now, let us consider some special cases. From (16) and (24) we have
B = AGkE, kg = Aghs, (33)

respectively. From (33) it is clear that if N, is a timelike cylindrical surface i.e., k{ = 0,
then under the variable transformation the curvature does not change. So we have the
following corollaries.

Corollary 4.1. The family of timelike cylindrical surfaces forms a family of timelike
similar ruled surfaces with variable transformation.

If N, is a timelike conoid surface i.e., k§ = 0, then under the variable transformation
the curvature does not change. So we have the following corollary.

Corollary 4.2. The family of timelike conoid surfaces forms a family of timelike similar
ruled surfaces with variable transformation.

5. SPACELIKE SIMILAR RULED SURFACES IN MINKOWSKI 3-SPACE E?

In this section we introduce the definition and characterizations of spacelike similar
ruled surfaces with variable transformation in E3. First, we give the following definition.
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Definition 5.1. Let N, and Ng be two spacelike ruled surfaces in E} given by the
parametrizations

o = 5 5 34
Fa(ss,v) = Blss) + vas(s), I3s]l =1 (34)

respectively, where d(sq) and 5(5/3) are striction curves of No and Ng and s., sg are arc

{ Ta(Sa,v) = A(8a) + v qa(5a), lGall=1

length parameters of d(sqa) and 5(85), respectively. Let the Frenet frames and invariants of
No and Ng be {q’a,ﬁa,ﬁa}, kS, kS and {q_'g,ﬁg,d'ﬂ}, k:lﬁ, kg, respectively. N, and Ng
are called spacelike similar ruled surfaces with variable transformation )\g if there exists a
variable transformation

50 = / X3 (55)dss, (35)
of the arc lengths such that the rulings are the same for two ruled surfaces i.e.,

ia(sa) = ‘TB(SB)) (36)
for all corresponding values of parameters under the transformation )\g. All spacelike ruled

surfaces satisfying equation (36) are called a family of spacelike similar ruled surfaces with
variable transformation.

Then we can give the following theorems characterizing spacelike similar ruled surfaces.
Whenever we talk about N, and Ng we mean that the surfaces are regular and have the
parametrizations as given in (34).

Theorem 5.1. Let N, and Ng be two spacelike ruled surfaces in Ef’ Then N, and Ng
are spacelike similar ruled surfaces with variable transformation if and only if the central
normal vectors of the surfaces are the same, i.e.,

Ea(sa) = 55(55)7 (37)
under the particular variable transformation
dse kY
e = 2> 38
P dsg kY (38)

of the arc lengths.

Proof. Let N, and Ng be two spacelike similar ruled surfaces in E3 with variable trans-
formation. Then differentiating (36) with respect to sg it follows

kK$ASho = ki Rg. (39)

From (39) we obtain (37) and (38) immediately.
Conversely, let N, and Ng be two spacelike ruled surfaces in E3 satisfying (37) and

(38). By multiplying (37) with kf and differentiating obtained equality with respect to sg
we have

[ K s assddsa = [ 1 sia(sn 2 dse. (40
From (37) and (38) we obtain
(s = [ K (so)asa)dsy = [ 17 (s0)as0)ds0 = (s, (41)

which means that N, and Ng are spacelike similar ruled surfaces with variable transfor-
mation.

O
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Theorem 5.2. Let N, and Ng be two spacelike ruled surfaces in E}. Then N, and
Ng are spacelike similar ruled surfaces with variable transformation if and only if the
asymptotic normal vectors of the surfaces are the same i.e.,

do(sa) = ds(sp), (42)
under the particular variable transformation
dse kY
Ag=—"=2 43
P dsg kg’ (43)

of the arc lengths.

Proof. Let N, and Ng be two spacelike similar ruled surfaces in E$ with variable transfor-
mation. Then from Definition 5.1 and Theorem 5.1 there exists a variable transformation
of the arc lengths such that the rulings and central normal vectors are the same. Then
from (36) and (37) we have

o (Sa) = —Ga(5a) X ha(sa) = —@3(sp) x hs(sg) = ds(ss)- (44)

Conversely, let N, and N be two spacelike ruled surfaces in F} satisfying (42) and
(43). By differentiating (42) with respect to sg we obtain

o > dsq -
K (sa)ha(sa) = = k3 (s5)ha(sp). (45)
53
which gives us
Koo .

AG = B ha(sa) = hp(sp)- (46)

Then from (42) and (46) we have
(ja(sa) = _ha(sa) X C_ia(sa) = _hﬂ(sﬁ) X 65(85) = Cfﬂ(sﬁ)v (47)
which completes the proof. [l

Theorem 5.3. Let N, and Ng be two spacelike ruled surfaces in Ef’ Then N, and Ng
are spacelike similar ruled surfaces with variable transformation if and only if the ratio of
curvatures are the same i.e.,

K5 (s5) _ kS (sa)
K (s5)  KT(sa)’
under the particular variable transformation keeping equal total curvatures, i.e.,

pals) = [ K (ss)dsy = [ Ki(sa)dse = pa(sa) (49)

(48)

of the arc lengths.

Proof. Let N, and Nz be two spacelike similar ruled surfaces in E$ with variable trans-
formation. Then from (43) and (46) we have (48) under the variable transformation (49),
and this transformation also leads from (43) by integration. Moreover, making similar
calculations given in the proof of Theorem 4.3, we have (49).

O

Theorem 5.4. Let spacelike ruled surfaces N and Ng be developable surfaces. Then N,
and Ng are spacelike similar ruled surfaces with variable transformation if and only if the
striction curves of the surfaces are similar curves with variable transformation.
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Proof. Let developable spacelike ruled surfaces N, and Ng be two spacelike similar ruled
surfaces in Fj with variable transformation. Since the surfaces are developable, from
Theorem 3.1 we have

da B g = B

E =Ta(sa) = Ga(Sa); @ =Tp(sp) = qs(sp), (50)
where Th(sq) and ’f:g(SB) are unit tangents of the striction curves d(s,) and 5(55), re-
spectively. From (36) and (50) we have

dal

) ; s
E = Ga(5a) = %(56) = 5

 dsg (51)

which shows that striction curves @(sq) and 3 (s3) are similar curves in Fj.
Conversely, if the striction curves @(s,) and Ji (sp) are similar curves, then there exists

a variable transformation between arc lengths such that
da L dg

—— = To(sa) = Ts(sp) = Iy

dsa (52)

Since the ruled surfaces are developable, from Theorem 3.1 we have fa(sa) = Gu(Sa) and
T3(sg) = qs(sg). From (52) we have that ¢n(sa) = q3(ss), i.e., No and Ny are spacelike
similar ruled surfaces with variable transformation.

O
From (38) and (46) we have
K = XSk, Kb = ASkS, (53)

respectively. From (53) it is clear that if N, is a cylindrical surface i.e., k¥ = 0, then
under the variable transformation the curvature does not change. So we have the following
corollaries.

Corollary 5.1. The family of spacelike cylindrical surfaces forms a family of spacelike
similar ruled surfaces with variable transformation.

If N, is a spacelike conoid surface i.e., k5 = 0, then under the variable transformation
the curvature does not change. So we have the following corollary.

Corollary 5.2. The family of spacelike conoid surfaces forms a family of spacelike similar
ruled surfaces with variable transformation.

6. CONCLUSIONS

In Minkowski 3-space E}, some special families of timelike and spacelike ruled surfaces
are defined and called similar ruled surfaces. Some properties of these special surfaces are
obtained and it is showed that developable ruled surfaces form a family of similar ruled
surfaces in F} if and only if the striction curves of the surfaces are similar curves with
variable transformation in E$. Of course, in Minkowski 3-space another type of the ruled
surfaces is ruled surface with lightlike ruling. By considering this present paper, one can
consider similar ruled surfaces with lightlike ruling and can obtain new characterizations
for these surfaces.
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