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SIMILAR RULED SURFACES WITH VARIABLE TRANSFORMATIONS

IN MINKOWSKI 3-SPACE E3
1

MEHMET ÖNDER1 §

Abstract. In this study, we consider the notion of similar ruled surface for timelike and
spacelike ruled surfaces in Minkowski 3-space E3

1 . We obtain some properties of these
special surfaces in E3

1 and show that developable ruled surfaces in E3
1 form a family of

similar ruled surfaces if and only if the striction curves of the surfaces are similar curves
with variable transformation. Moreover, we obtain that cylindrical surfaces and conoids
form two families of similar ruled surfaces in E3

1 .
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1. Introduction

In the curve theory, special curve pairs for which at the corresponding points of the
curves one of the Frenet vectors of a curve coincides with one of the Frenet vectors of
other curve, are very interesting and an important problem of the differential geometry.
Bertrand curves, Mannheim curves and involute-evolute curves are the well-known types
of such curves and studied extensively [6,14,17]. Recently, a new definition of the special
curves was given by El-Sabbagh and Ali [2]. They have called these new curves as similar
curves with variable transformation and defined as follows: Let ψα(sα) and ψβ(sβ) be
two regular curves in E3 parameterized by arc lengths sα and sβ with curvatures κα,

κβ and torsions τα, τβ and Frenet frames
{
~Tα, ~Nα, ~Bα

}
and

{
~Tβ, ~Nβ, ~Bβ

}
. ψα(sα) and

ψβ(sβ) are called similar curves with variable transformation λαβ if there exists a variable
transformation

sα =

∫
λαβ(sβ)dsβ,

of the arc lengths such that the tangent vectors are the same for two curves i.e., ~Tα = ~Tβ
for all corresponding values of parameters under the transformation λαβ . They have called
all curves satisfying this condition as a family of similar curves. Moreover, they have
obtained some properties of the family of similar curves.

Furthermore, the surface pairs especially ruled surface pairs (called offset surfaces)
have an important positions and applications in the study of design problems in spatial
mechanisms and physics, kinematics and computer aided design (CAD) [11,12]. So, these
surfaces are one of the most important topics of surface theory. In fact, ruled surface

1 Manisa Celal Bayar University, Faculty of Arts and Sciences, Department of Mathematics, Muradiye
Campus, 45140 Muradiye, Manisa, Turkey.
e-mail: mehmet.onder@cbu.edu.tr;
§ Manuscript received: September 02, 2014.

TWMS Journal of Applied and Engineering Mathematics, Vol.5, No.2; c© Işık University, Department
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offsets are the generalizations of the notion of Bertrand curves, Mannheim curves and
similar curves to the line geometry and these surface pairs are called Bertrand offsets,
Mannheim offsets and similar ruled surfaces, respectively [5,8,9,13].

In this work, we introduce timelike and spacelike similar ruled surfaces in Minkowski
3-space E3

1 . We give some theorems characterizing these special surfaces and we show that
developable ruled surfaces in E3

1 form a family of similar ruled surfaces if and only if the
striction curves of the surfaces are similar curves with variable transformation.

2. Preliminaries

Let E3
1 be a Minkowski 3-space with natural Lorentz Metric

〈, 〉 = −dx21 + dx22 + dx23,

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . According to this metric, in

E3
1 an arbitrary vector ~v = (v1, v2, v3) can have one of three Lorentzian causal characters;

it can be spacelike if 〈~v,~v〉 > 0 or ~v = 0, timelike if 〈~v,~v〉 < 0 and null (lightlike) if
〈~v,~v〉 = 0 and ~v 6= 0 [7]. Similarly, an arbitrary curve ~α = ~α(s) can locally be spacelike,
timelike or null (lightlike), if all of its velocity vectors ~α′(s) are spacelike, timelike or null
(lightlike), respectively. For the vectors ~x = (x1, x2, x3) and ~y = (y1, y2, y3) in E3

1 , the
vector product of ~x and ~y is defined by

~x ∧ ~y = (x2y3 − x3y2, x1y3 − x3y1, x2y1 − x1y2).
The Lorentzian sphere and hyperbolic sphere of radius r and center origin in E3

1 are
given by

S2
1 =

{
~x = (x1, x2, x3) ∈ E3

1 : 〈~x, ~x〉 = r2
}
,

and
H2

0 =
{
~x = (x1, x2, x3) ∈ E3

1 : 〈~x, ~x〉 = −r2
}
,

respectively [10,16].
Analogue to the curves, a surface can be timelike or spacelike in E3

1 . A surface in the
Minkowski 3-space E3

1 is called a timelike surface if the induced metric on the surface is
a Lorentz metric and is called a spacelike surface if the induced metric on the surface is a
positive definite Riemannian metric. Note that the normal vector on spacelike (timelike)
surface is a timelike (spacelike) vector [1].

3. Timelike and Spacelike Ruled Surfaces in Minkowski 3-space

Let I be an open interval in the real line IR. Let ~k = ~k(u) be a curve in E3
1 defined

on I and ~q = ~q(u) be a unit direction vector of an oriented line in E3
1 . Then we have the

following parametrization for a ruled surface N ,

~ϕ(u, v) = ~k(u) + v ~q(u). (1)

The parametric u-curve of this surface is a straight line of the surface which is called

ruling. For v = 0, the parametric v-curve of this surface is ~k = ~k(u) which is called base
curve or generating curve of the surface. In particular, if the direction of ~q is constant,
the ruled surface is said to be cylindrical, and non-cylindrical otherwise.

The distribution parameter (or drall) of the ruled surface in (1) is given as

δϕ =

∣∣∣d~k, ~q, d~q∣∣∣
〈d~q, d~q〉

(2)

([4]). Then the normal vectors are collinear at all points of same ruling and at nonsingular
points of the surface N , the tangent planes are identical. We then say that tangent
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plane contacts the surface along a ruling. Such a ruling is called a torsal ruling. If∣∣∣d~k, ~q, d~q∣∣∣ 6= 0, then the tangent planes of the surface N are distinct at all points of same

ruling which is called nontorsal [10,16].

For the unit normal vector ~m of the ruled surface N , we have ~m = ~ϕu×~ϕv

‖~ϕu×~ϕv‖ . So, at the

points of a nontorsal ruling u = u1 we have

~a = lim
v→∞

~m(u1, v) =
d~q × ~q
‖d~q‖

.

The point at which the unit normal of N is perpendicular to ~a is called the striction point
(or central point) C and the set of striction points of all rulings is called striction curve
of the surface. The parametrization of the striction curve ~c = ~c(u) on a ruled surface is
given by

~c(u) = ~k(u)−

〈
d~q, d~k

〉
〈d~q, d~q〉

~q, (3)

[10,15,16]. So that, the base curve of the ruled surface is its striction curve if and only if〈
d~q, d~k

〉
= 0.

The vector ~h defined by ~h = ±~a×~q is called central normal which is the surface normal

along the striction curve. Then the orthonormal system
{
C; ~q,~h,~a

}
is called Frenet frame

of the ruled surfaces N where C is the central point of ruling of N and ~q, ~h = ±~a× ~q, ~a
are unit vectors of ruling, central normal and central tangent, respectively.

Now, let us consider the ruled surface N . According to the Lorentzian casual characters
of ruling and central normal, we can give the following classifications of the ruled surface
N ;

i) If the central normal vector ~h is spacelike and ~q is timelike, then the ruled surface N
is said to be of type N−.

ii) If the central normal vector ~h and the ruling ~q are both spacelike, then the ruled
surface N is said to be of type N+.

iii) If the central normal vector ~h is timelike, then the ruled surface N is said to be of
type N× [10,16].

The ruled surfaces of type N+ and N− are clearly timelike and the ruled surface of type
N× is spacelike. (For a more general classifications of ruled surfaces see [3]). By using
these classifications and taking the striction curve as the base curve, the parametrization
of the ruled surface N can be given as follows,

ϕ(s, v) = ~c(s) + v ~q(s), (4)

where 〈~q, ~q〉 = ε (= ±1),
〈
~h,~h

〉
= ±1 and s is the arc length of the striction curve.

For the derivatives of the vectors of Frenet frame
{
C; ~q,~h,~a

}
of ruled surface N with

respect to the arc length s of striction curve we have the followings
i) If the ruled surface N is a timelike ruled surface then we have d~q/ds

d~h/ds
d~a/ds

 =

 0 k1 0
−εk1 0 k2

0 εk2 0

 ~q
~h
~a

 , (5)

and
~q × ~h = ε~a, ~h× ~a = −ε~q, ~a× ~q = −~h, (6)

[See 10].
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ii) If the ruled surface N is spacelike ruled surface then we have d~q/ds

d~h/ds
d~a/ds

 =

 0 k1 0
k1 0 k2
0 k2 0

 ~q
~h
~a

 , (7)

and
~q × ~h = −~a, ~h× ~a = −~q, ~a× ~q = ~h, (8)

[See 16].

In the equations (5) and (7), k1 = ds1
ds , k2 = ds3

ds and s1, s3 are the arc lengths of
the spherical curves circumscribed by the unit vectors ~q and ~a, respectively. Moreover,
timelike and spacelike ruled surfaces satisfying k1 6= 0, k2 = 0 are called timelike and
spacelike conoids in E3

1 , respectively [10,16].
Now, we can represent and prove the following theorems which are necessary for the

following sections.

Theorem 3.1. Let the striction curve ~c = ~c(s) of ruled surface N be a unit speed curve
with same Lorentzian casual character with the ruling and let ~c(s) also be the base curve
of the surface. Then N is developable if and only if the unit tangent of the striction curve
is the same with the ruling along the curve.

Proof. Let N be a timelike ruled surface and let s be arc length parameter of the striction
curve. Then the unit tangent of the striction curve is given by

~T (s) =
d~c

ds
= (cosh θ)~q(s) + (sinh θ)~a(s),

where θ = θ(s) is the angle between unit vectors ~T (s) and ~q(s) [10]. Since the striction
curve is taken as base curve, from (2) and (5) the distribution parameter of the surface N
is obtained as

d = −sinh θ

k1
.

Thus we have that timelike ruled surface N is developable if and only if ~T (s) = ~q(s)
satisfies.

If N is a spacelike ruled surface then the unit tangent of the striction curve is given by

~T (s) =
d~c

ds
= (cos θ)~q(s) + (sin θ)~a(s),

(See [16]). Then from (2) and (5) the distribution parameter of the surface N is obtained
as

d =
sin θ

k1
.

Thus we have that spacelike ruled surface N is developable if and only if ~T (s) = ~q(s)
satisfies.

�

Theorem 3.2. Let the striction curve ~c = ~c(s) of ruled surface N be unit speed i.e., s
is arc length parameter of ~c(s). Suppose that ~c = ~c(ϕ) is another parametrization of the
striction curve by the parameter ϕ(s) =

∫
k1(s)ds. Then the ruling ~q satisfies a vector

differential equation of third order given by
d
dϕ

(
1

f(ϕ)
d2~q
dϕ2

)
+ ε

(
1−f2(ϕ)
f(ϕ)

)
d~q
dϕ − ε

(
1

f2(ϕ)
df(ϕ)
dϕ

)
~q = 0; if N is timelike,

d
dϕ

(
1

f(ϕ)
d2~q
dϕ2

)
−
(
1+f2(ϕ)
f(ϕ)

)
d~q
dϕ +

(
1

f2(ϕ)
df(ϕ)
dϕ

)
~q = 0; if N is spacelike,

(9)
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where f(ϕ) = k2(ϕ)
k1(ϕ)

.

Proof. Let N be a timelike ruled surface. If we write derivatives given in (5) according to
ϕ, we have

d~q

dϕ
= ~h,

d~h

dϕ
= −ε~q + f(ϕ)~a,

d~a

dϕ
= εf(ϕ)~h,

respectively, where f(ϕ) = k2(ϕ)
k1(ϕ)

. Then corresponding matrix form of (5) can be given d~q/dϕ

d~h/dϕ
d~a/dϕ

 =

 0 1 0
−ε 0 f(ϕ)
0 εf(ϕ) 0

 ~q
~h
~a

 . (10)

From the first and second equations of new Frenet derivatives (10) we have

~a =
1

f(ϕ)

(
d2~q

dϕ2
+ ε~q

)
. (11)

Substituting the above equation in the last equation of (10) we have the first equation of
(9).

If N is a spacelike ruled surface, then considering Frenet formulae (7) and following the
same procedure we have the second equation of (9) immediately.

�

4. Timelike Similar Ruled Surfaces in Minkowski 3-space E3
1

In this section we introduce the definition and characterizations of timelike similar ruled
surfaces with variable transformation in E3

1 . First, we give the following definition.

Definition 4.1. Let Nα and Nβ be two timelike ruled surfaces of the same type in E3
1

given by the parametrizations{
~rα(sα, v) = ~α(sα) + v ~qα(sα), ‖~qα‖ = 1

~rβ(sβ, v) = ~β(sβ) + v ~qβ(sβ), ‖~qβ‖ = 1
(12)

respectively, where ~α(sα) and ~β(sβ) are striction curves of Nα and Nβ and sα, sβ are arc

length parameters of ~α(sα) and ~β(sβ), respectively. Let the Frenet frames and invariants

of Nα and Nβ be
{
~qα,~hα,~aα

}
, kα1 , k

α
2 and

{
~qβ,~hβ,~aβ

}
, kβ1 , k

β
2 , respectively. Nα and

Nβ are called timelike similar ruled surfaces with variable transformation λαβ if there exists
a variable transformation

sα =

∫
λαβ(sβ)dsβ, (13)

of the arc lengths such that the rulings are the same for two ruled surfaces i.e.,

~qα(sα) = ~qβ(sβ), (14)

for all corresponding values of parameters under the transformation λαβ . All timelike ruled

surfaces satisfying equation (14) are called a family of timelike similar ruled surfaces with
variable transformation.



224 TWMS J. APP. ENG. MATH. V.5, N.2, 2015

Then we can give the following theorems characterizing timelike similar ruled sur-
faces. Whenever we talk about Nα and Nβ, we mean that the surfaces regular and have
parametrizations given in (12).

Theorem 4.1. Let Nα and Nβ be two timelike ruled surfaces in E3
1 . Then Nα and Nβ

are timelike similar ruled surfaces with variable transformation if and only if the central
normal vectors of the surfaces are the same, i.e.,

~hα(sα) = ~hβ(sβ), (15)

under the particular variable transformation

λαβ =
dsα
dsβ

=
kβ1
kα1
, (16)

of the arc lengths.

Proof. Let Nα and Nβ be two timelike similar ruled surfaces in E3
1 with variable transfor-

mation. Then differentiating (14) with respect to sβ it follows

kα1 λ
α
β
~hα = kβ1

~hβ. (17)

From (17) we obtain (15) and (16) immediately.
Conversely, let Nα and Nβ be two regular timelike ruled surfaces in E3

1 satisfying (15)

and (16). By multiplying (15) with kβ1 and differentiating the result with respect to sβ,
we have ∫

kβ1 (sβ)~hβ(sβ)dsβ =

∫
kβ1 (sβ)~hβ(sβ)

dsβ
dsα

dsα. (18)

From (15) and (16) we obtain

~qβ(sβ) =

∫
kβ1 (sβ)~hβ(sβ)dsβ =

∫
kα1 (sα)~hα(sα)dsα = ~qα(sα), (19)

which means that Nα and Nβ are timelike similar ruled surfaces with variable transfor-
mation.

�

Theorem 4.2. Let Nα and Nβ be two timelike ruled surfaces in E3
1 . Then Nα and Nβ are

timelike similar ruled surfaces with variable transformation if and only if the asymptotic
normal vectors of the surfaces satisfy the following equality

~aα(sα) = εαεβ~aβ(sβ), (20)

under the particular variable transformation

λαβ =
dsα
dsβ

=
kβ2
kα2
, (21)

of the arc lengths, where εα = 〈~qα, ~qα〉 = ±1, εβ = 〈~qβ, ~qβ〉 = ±1.

Proof. Let Nα and Nβ be two timelike similar ruled surfaces in E3
1 with variable transfor-

mation. Then from Definition 4.1 and Theorem 4.1 there exists a variable transformation
of the arc lengths such that the rulings and central normal vectors are the same. Then
from (14) and (15) we have

~aα(sα) = εα

(
~qα(sα)× ~hα(sα)

)
= εα

(
~qβ(sβ)× ~hβ(sβ)

)
= εαεβ~aβ(sβ). (22)
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Conversely, let Nα and Nβ be two timelike ruled surfaces in E3
1 satisfying (20) and (21).

By differentiating (20) with respect to sβ, it follows

εαk
α
2 (sα)~hα(sα)

dsα
dsβ

= εαεβ

(
εβk

β
2 (sβ)~hβ(sβ)

)
, (23)

which gives us

λαβ =
kβ2
kα2
, ~hα(sα) = ~hβ(sβ). (24)

Then from (20) and (24) we have

~qα(sα) = −εα~hα(sα)× ~aα(sα) = −εα
(
εαεβ~hβ(sβ)× ~aβ(sβ)

)
= −εβ~hβ(sβ)× ~aβ(sβ)

= ~qβ(sβ)
(25)

which completes the proof.
�

Theorem 4.3. Let Nα and Nβ be two timelike ruled surfaces in E3
1 . Then Nα and Nβ

are timelike similar ruled surfaces with variable transformation if and only if the ratio of
curvatures are the same i.e.,

kβ2 (sβ)

kβ1 (sβ)
=
kα2 (sα)

kα1 (sα)
, (26)

under the particular variable transformation keeping equal total curvatures, i.e.,

ϕβ(sβ) =

∫
kβ1 (sβ)dsβ =

∫
kα1 (sα)dsα = ϕα(sα) (27)

of the arc lengths.

Proof. Let Nα and Nβ be two timelike similar ruled surfaces in E3
1 with variable trans-

formation. Then from (21) and (24) we have (26) under the variable transformation (27),
and this transformation also leads from (21) by integration.

Conversely, let Nα and Nβ be two timelike ruled surfaces in E3
1 satisfying (26) and (27).

From Theorem 3.2, the rulings ~qα and ~qβ of the surfaces Nα and Nβ satisfy the following
vector differential equations of third order

d

dϕα

(
1

fα(ϕα)

d2~qα
dϕ2

α

)
+ εα

(
1− f2α(ϕα)

fα(ϕα)

)
d~qα
dϕα

− εα
(

1

f2α(ϕα)

dfα(ϕα)

dϕα

)
~qα = 0, (28)

d

dϕβ

(
1

fβ(ϕβ)

d2~qβ
dϕ2

β

)
+ εβ

(
1− f2β(ϕβ)

fβ(ϕβ)

)
d~qβ
dϕβ

− εβ

(
1

f2β(ϕβ)

dfβ(ϕβ)

dϕβ

)
~qβ = 0, (29)

respectively, where

fα(ϕα) =
kα2 (ϕα)

kα1 (ϕα)
, fβ(ϕβ) =

kβ2 (ϕβ)

kβ1 (ϕβ)
, ϕα(sα) =

∫
kα1 (sα)dsα, ϕβ(sβ) =

∫
kβ1 (sβ)dsβ.

From (26) we have fα(ϕα) = fβ(ϕβ) under the variable transformation ϕα = ϕβ. Thus
under the equation (26) and transformation (27), the equations (28) and (29) are the same,
i.e., they have the same solutions. It means that the rulings ~qα and ~qβ are the same. Then
Nα and Nβ are two timelike similar ruled surfaces in E3

1 with variable transformation.
�
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Theorem 4.4. Let timelike ruled surfaces Nα and Nβ be developable surfaces and let the
striction lines have the same Lorentzian characters with the rulings. Then Nα and Nβ

are timelike similar ruled surfaces with variable transformation if and only if the striction
curves of surfaces are similar curves with variable transformation.

Proof. Let developable timelike ruled surfaces Nα and Nβ be two timelike similar ruled
surfaces in E3

1 with variable transformation. Since the surfaces are developable, from
Theorem 3.1 we have

d~α

dsα
= ~Tα(sα) = ~qα(sα),

d~β

dsβ
= ~Tβ(sβ) = ~qβ(sβ). (30)

where ~Tα(sα) and ~Tβ(sβ) are unit tangents of the striction curves ~α(sα) and ~β(sβ), re-
spectively. From (14) and (30) we have

d~α

dsα
= ~qα(sα) = ~qβ(sβ) =

d~β

dsβ
, (31)

which shows that striction curves ~α(sα) and ~β(sβ) are similar curves in E3
1 .

Conversely, if the striction curves ~α(sα) and ~β(sβ) are similar curves, then there exists
a variable transformation between arc lengths such that

d~α

dsα
= ~Tα(sα) = ~Tβ(sβ) =

d~β

dsβ
. (32)

Since the ruled surfaces are developable, from Theorem 3.1 we have ~Tα(sα) = ~qα(sα) and
~Tβ(sβ) = ~qβ(sβ). Then from (32) we have that ~qα(sα) = ~qβ(sβ), i.e., Nα and Nβ are
timelike similar ruled surfaces with variable transformation.

�

Now, let us consider some special cases. From (16) and (24) we have

kβ1 = λαβk
α
1 , kβ2 = λαβk

α
2 , (33)

respectively. From (33) it is clear that if Nα is a timelike cylindrical surface i.e., kα1 = 0,
then under the variable transformation the curvature does not change. So we have the
following corollaries.

Corollary 4.1. The family of timelike cylindrical surfaces forms a family of timelike
similar ruled surfaces with variable transformation.

If Nα is a timelike conoid surface i.e., kα2 = 0, then under the variable transformation
the curvature does not change. So we have the following corollary.

Corollary 4.2. The family of timelike conoid surfaces forms a family of timelike similar
ruled surfaces with variable transformation.

5. Spacelike Similar Ruled Surfaces in Minkowski 3-space E3
1

In this section we introduce the definition and characterizations of spacelike similar
ruled surfaces with variable transformation in E3

1 . First, we give the following definition.
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Definition 5.1. Let Nα and Nβ be two spacelike ruled surfaces in E3
1 given by the

parametrizations {
~rα(sα, v) = ~α(sα) + v ~qα(sα), ‖~qα‖ = 1

~rβ(sβ, v) = ~β(sβ) + v ~qβ(sβ), ‖~qβ‖ = 1
(34)

respectively, where ~α(sα) and ~β(sβ) are striction curves of Nα and Nβ and sα, sβ are arc

length parameters of ~α(sα) and ~β(sβ), respectively. Let the Frenet frames and invariants of

Nα and Nβ be
{
~qα,~hα,~aα

}
, kα1 , k

α
2 and

{
~qβ,~hβ,~aβ

}
, kβ1 , k

β
2 , respectively. Nα and Nβ

are called spacelike similar ruled surfaces with variable transformation λαβ if there exists a
variable transformation

sα =

∫
λαβ(sβ)dsβ, (35)

of the arc lengths such that the rulings are the same for two ruled surfaces i.e.,

~qα(sα) = ~qβ(sβ), (36)

for all corresponding values of parameters under the transformation λαβ . All spacelike ruled

surfaces satisfying equation (36) are called a family of spacelike similar ruled surfaces with
variable transformation.

Then we can give the following theorems characterizing spacelike similar ruled surfaces.
Whenever we talk about Nα and Nβ we mean that the surfaces are regular and have the
parametrizations as given in (34).

Theorem 5.1. Let Nα and Nβ be two spacelike ruled surfaces in E3
1 . Then Nα and Nβ

are spacelike similar ruled surfaces with variable transformation if and only if the central
normal vectors of the surfaces are the same, i.e.,

~hα(sα) = ~hβ(sβ), (37)

under the particular variable transformation

λαβ =
dsα
dsβ

=
kβ1
kα1
, (38)

of the arc lengths.

Proof. Let Nα and Nβ be two spacelike similar ruled surfaces in E3
1 with variable trans-

formation. Then differentiating (36) with respect to sβ it follows

kα1 λ
α
β
~hα = kβ1

~hβ. (39)

From (39) we obtain (37) and (38) immediately.
Conversely, let Nα and Nβ be two spacelike ruled surfaces in E3

1 satisfying (37) and

(38). By multiplying (37) with kβ1 and differentiating obtained equality with respect to sβ
we have ∫

kβ1 (sβ)~hβ(sβ)dsβ =

∫
kβ1 (sβ)~hβ(sβ)

dsβ
dsα

dsα. (40)

From (37) and (38) we obtain

~qβ(sβ) =

∫
kβ1 (sβ)~hβ(sβ)dsβ =

∫
kα1 (sα)~hα(sα)dsα = ~qα(sα), (41)

which means that Nα and Nβ are spacelike similar ruled surfaces with variable transfor-
mation.

�
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Theorem 5.2. Let Nα and Nβ be two spacelike ruled surfaces in E3
1 . Then Nα and

Nβ are spacelike similar ruled surfaces with variable transformation if and only if the
asymptotic normal vectors of the surfaces are the same i.e.,

~aα(sα) = ~aβ(sβ), (42)

under the particular variable transformation

λαβ =
dsα
dsβ

=
kβ2
kα2
, (43)

of the arc lengths.

Proof. Let Nα and Nβ be two spacelike similar ruled surfaces in E3
1 with variable transfor-

mation. Then from Definition 5.1 and Theorem 5.1 there exists a variable transformation
of the arc lengths such that the rulings and central normal vectors are the same. Then
from (36) and (37) we have

~aα(sα) = −~qα(sα)× ~hα(sα) = −~qβ(sβ)× ~hβ(sβ) = ~aβ(sβ). (44)

Conversely, let Nα and Nβ be two spacelike ruled surfaces in E3
1 satisfying (42) and

(43). By differentiating (42) with respect to sβ we obtain

kα2 (sα)~hα(sα)
dsα
dsβ

= kβ2 (sβ)~hβ(sβ), (45)

which gives us

λαβ =
kβ2
kα2
, ~hα(sα) = ~hβ(sβ). (46)

Then from (42) and (46) we have

~qα(sα) = −~hα(sα)× ~aα(sα) = −~hβ(sβ)× ~aβ(sβ) = ~qβ(sβ), (47)

which completes the proof. �

Theorem 5.3. Let Nα and Nβ be two spacelike ruled surfaces in E3
1 . Then Nα and Nβ

are spacelike similar ruled surfaces with variable transformation if and only if the ratio of
curvatures are the same i.e.,

kβ2 (sβ)

kβ1 (sβ)
=
kα2 (sα)

kα1 (sα)
, (48)

under the particular variable transformation keeping equal total curvatures, i.e.,

ϕβ(sβ) =

∫
kβ1 (sβ)dsβ =

∫
kα1 (sα)dsα = ϕα(sα) (49)

of the arc lengths.

Proof. Let Nα and Nβ be two spacelike similar ruled surfaces in E3
1 with variable trans-

formation. Then from (43) and (46) we have (48) under the variable transformation (49),
and this transformation also leads from (43) by integration. Moreover, making similar
calculations given in the proof of Theorem 4.3, we have (49).

�

Theorem 5.4. Let spacelike ruled surfaces Nα and Nβ be developable surfaces. Then Nα

and Nβ are spacelike similar ruled surfaces with variable transformation if and only if the
striction curves of the surfaces are similar curves with variable transformation.
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Proof. Let developable spacelike ruled surfaces Nα and Nβ be two spacelike similar ruled
surfaces in E3

1 with variable transformation. Since the surfaces are developable, from
Theorem 3.1 we have

d~α

dsα
= ~Tα(sα) = ~qα(sα),

d~β

dsβ
= ~Tβ(sβ) = ~qβ(sβ), (50)

where ~Tα(sα) and ~Tβ(sβ) are unit tangents of the striction curves ~α(sα) and ~β(sβ), re-
spectively. From (36) and (50) we have

d~α

dsα
= ~qα(sα) = ~qβ(sβ) =

d~β

dsβ
(51)

which shows that striction curves ~α(sα) and ~β(sβ) are similar curves in E3
1 .

Conversely, if the striction curves ~α(sα) and ~β(sβ) are similar curves, then there exists
a variable transformation between arc lengths such that

d~α

dsα
= ~Tα(sα) = ~Tβ(sβ) =

d~β

dsβ
. (52)

Since the ruled surfaces are developable, from Theorem 3.1 we have ~Tα(sα) = ~qα(sα) and
~Tβ(sβ) = ~qβ(sβ). From (52) we have that ~qα(sα) = ~qβ(sβ), i.e., Nα and Nβ are spacelike
similar ruled surfaces with variable transformation.

�

From (38) and (46) we have

kβ1 = λαβk
α
1 , kβ2 = λαβk

α
2 , (53)

respectively. From (53) it is clear that if Nα is a cylindrical surface i.e., kα1 = 0, then
under the variable transformation the curvature does not change. So we have the following
corollaries.

Corollary 5.1. The family of spacelike cylindrical surfaces forms a family of spacelike
similar ruled surfaces with variable transformation.

If Nα is a spacelike conoid surface i.e., kα2 = 0, then under the variable transformation
the curvature does not change. So we have the following corollary.

Corollary 5.2. The family of spacelike conoid surfaces forms a family of spacelike similar
ruled surfaces with variable transformation.

6. Conclusions

In Minkowski 3-space E3
1 , some special families of timelike and spacelike ruled surfaces

are defined and called similar ruled surfaces. Some properties of these special surfaces are
obtained and it is showed that developable ruled surfaces form a family of similar ruled
surfaces in E3

1 if and only if the striction curves of the surfaces are similar curves with
variable transformation in E3

1 . Of course, in Minkowski 3-space another type of the ruled
surfaces is ruled surface with lightlike ruling. By considering this present paper, one can
consider similar ruled surfaces with lightlike ruling and can obtain new characterizations
for these surfaces.
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