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ANALYTICAL AND NUMERICAL ASPECTS OF THE DISSIPATIVE
NONLINEAR SCHRODINGER EQUATION

C. BAYINDIR!, §

ABSTRACT. In this paper various analytical and numerical aspects of the dissipative
nonlinear Schrodinger equation (d-NLS equation) are discussed. Decaying solitary wave
type solutions derived by Demiray is reviewed and a new approximate solitary wave
type solution of the d-NLS equation is introduced in order to make comparisons. Also a
split-step Fourier scheme is proposed for numerical solution of the d-NLS equation and
the analytical solutions are compared with the numerical results.
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1. INTRODUCTION

In nonlinear wave theory it is known that the nonlinear Schrodinger (NLS) equation is

the simplest equation that describes self-modulating monochromatic waves in dispersive
medium [10]. In addition to its many uses in acoustics, optics, plasma physics and quantum
mechanics it can also be used to model the evolution of the weakly nonlinear water wave
packets on the surface of a deep water [19]. If not only a dispersive but also a dissipative
medium is considered, then the first-order amplitude modulation can be described by
the dissipative nonlinear Schrédinger equation (d-NLS equation). Therefore the d-NLS
equation can be used to model the dissipative self-modulating monochromatic waves with
dispersion.
In this paper we discuss various analytical and numerical aspects of the dissipative non-
linear Schrodinger equation. Decaying solitary wave solutions of sech type derived by
Demiray [10] is reviewed and a new approximate dissipative solution of d-NLS equation
is introduced to assess this solution. Additionally a split-step Fourier scheme is proposed
for numerical solution of the d-NSE. The analytical solutions are compared with the nu-
merical results. It is shown that both the approximate and Demiray solutions agree well
with the numerical results for the solitary wave envelope however some phase mismatch
can be observed in the real and imaginary parts. Agreement is much better in the zero
dissipation limit as expected.
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2. METHODOLOGY
The d-NLS equation can be given as
i+ s + o 0> 0 + ipan = 0 (1)

where p1, po, 3 are constants which represent dispersion, nonlinearity and dissipative
effects, respectively. When the dissipative effects are weak, i.e, u3 ~ 0, the d-NLS equation
reduces to NLS equation of the form

i + pner + p2 |n>n =0 (2)

It is known that NLS equation has exact localized traveling wave solutions [10, 17] in the
form of

n(xz,t) = V() expli(Kz — Qt)], (=x—wt, = const., (3)
where
V(() = asech [(2“:) ac] Q= K a2, (1)
1
for pypo > 0 and
V(O = atanh | (<32 Yac| . 0= mA? - ac?, )
2p0

for pips < 0. Here a is the amplitude of the solitary wave and vg = 2u1 K is a constant
which represents the solitary wave celerity.

Dissipative sech-type solitons.

Review of the Demiray sech-type soliton. In this section we give a brief review of the
analytical solutions derived by Demiray [10]. Motivated with the solutions of NLS given
in (3)-(5), we seek a solution to the d-NLS equation given in (1) in the form of

n(z,t) = a(@)V(Q) exp{i[Kz — Q1)]}, (= alt)lz —2mKt], (6)
where K is constant and a,«,V are some real valued functions [10]. This leads to the
ordinary differential equations of

S ] Ve =0 "
and
[ (t) — 1 K2V 4 p1a(t)* V" + paad®(t) V3 = 0, (8)

which arises from real and imaginary parts, respectively. Multiplying (7) by V and inte-
grating the product with respect to ¢ from —oo to oo we obtain [10]

a'(t) 1d(t) 2 2 /OO 2

—Z Vs =0 Ve = Vadc. 9

[a(t) sod | ) =0 (v = [T v (9)

Seeking a bounded and nonzero solution with the condition (V?) < oo, we obtain[10]
a(t) 1)
a(t) 2 at)

Multiplying both sides of (8) by V' and integrating the product over { results in

+ p3 = 0. (10)

() — 1 KA V2 + ma(t)*(V')? + ’”Z(t)v‘* =0, (11)

Introducing a new variable as

v(¢) = V() (12)
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and using this in (11) results in

t)? t)?
0(0) - k2 00 gy 1200 (13)
At this point one can introduce a new independent variable as[10]
y = tanh (, -1<y<1. (14)

Seeking a solution of the form[10]

p=1-y° (15)
to the (13) and realizing that d/d¢ = (1 — y?)d/dy and setting the coefficients of different
powers of y equal to zero we arrive at[10]

a)? = L2, @) = L2a)? + K (16)
2/1,1 2
In order « to be real the ujpe > 0 condition must be satisfied. Also using (16) it can be
shown that o/ (t)a(t) = a’(t)/a(t). Using this expression back in (10) we obtain[10]
a’'(t)
a(t)
The solution of this equation can be easily written as
a(t) = age 21t (18)

where ag is a constant which represents the amplitude of the waveform. Using (18) back
in (16) we obtain [10]

+2us = 0. (17)

1/2 2
a@%=(£z> age 41, QG)zud@t+%%?u—e4%W (19)

Therefore the sech type Demiray soliton solution of the d-NLS equation becomes
1/2
np(,1) = age”#tsech[(] exp{i[Q(t) — Kal}, (= (2“2) a(t)(z — 2um Kt). (20)
1
It is important to note that this solution is a solution in the averaged sense, not in the

classical sense [10]. This equation shows that not only amplitude of the waveform decays
but also the lobe width increases with time.

A new approximate dissipative soliton. In this section we propose a new approximate
solution of the d-NLS equation to make an assessment of the Demiray solution. Seeking
a solution of the form

Napp(x,t) = V() expli(Kz — Qt) — ¢(t)], (=z—wot, vy = const., (21)

to the d-NLS equation given in (1), where ¢ is a real function, we arrive at the approximate
solution as

Napp(2,t) = V({) expli(Kx — Qt) — pst], =z —wpt, vy = const., (22)

It is obvious that, smaller the dissipation (u3), better the approximation. Again V(() is
given by

V() = asech {(“) ac] Q= K — a2, (23)
2

for pqpo > 0 and

V(O = atant [(~L2 ) ac| . 0= mK? e (24
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for pius < 0.

A split-step Fourier scheme for dissipative nonlinear Schrdinger equation. One
of the most popular choices for numerical simulations of the differential equations is spec-
tral methods. Spectral methods are common tools in numerical mathematics and they are
used in modeling various phenomena of including but not limited to acoustics, hydrody-
namics [2, 5, 13, 14], optics, heat conduction [9] etc. In spectral simulations, the spatial
derivatives are evaluated using basis functions of the orthogonal transforms. In periodic
domain the most popular choice is the Fourier basis functions therefore fast and inverse
fast Fourier transforms are employed very frequently.

Numerical time integration is generally performed by schemes such as 4** order Runge-
Kutta or Adams-Bashforth [1, 4, 6, 7]. Although its historical development is much later,
one of the most popular techniques is the split-step method [11, 12, 17]. The fundamental
idea in the split-step method is to approximate the exact solution of the governing equation
as the seperate solutions of the linear and nonlinear equations in a given sequential order
[3], in which the solution of the nonlinear part is used as an initial condition for the linear
part or vice versa. This operation results in a splitting error due to the non-commutativity
of £ and N [16]. One option is to use the Baker-Campbell-Hausdorf formula [16] to reduce
the splitting error however in this study we suffice with first order splitting. A possible
way of writing the nonlinear part of the equation d-NLS equation given in (1) is

. 2 .
ine =Nn=— (ug Inl” + 1M3> U (25)
where N/ = — <M2 |77|2 + ng) is the nonlinear operator. The solution of this equation can
be written as
) 2
i(x, to + At) a (2l —us) Aty g 4) (26)

where At is the time step. The linear part of the d-NLS equation given in (1) can be
recognized as

ine = Ln =~z (27)
where £ = —10%() /022 is the linear operator. The solution of this equation can be found
using Fourier series

1w, to + At) ~ FH e F(i, to + A (28)

where k, F, F~! are the wavenumber vector, Fourier and inverse Fourier transform opera-
tions, respectively. Combining (26) and (28) we arrive at

n(x, to + At) o F1[em kAt pro(inainf=ps) Aty 4] (29)

This equation can be used to obtain the numerical solution of the d-NLS equation given
in (1) starting from the initial conditions. In the numerical simulations we use At = 0.01
which does not cause any stability problems and has only minor truncation errors.

3. RESULTS AND DISCUSSION

We focus on sech type solutions in this study but similar results can be easily obtained
for other type of solutions such as kinks. The parameters in this study are selected as
a=1,K = -2 u; = —1,us = —2. For these parameters the exact solution of the NLS
equation given in (2) becomes

n(z,t) = aexp [—i (22 — [4 — a®]t)] sech [a(z — 4t)] , (30)
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Similarly the dissipative Demiray soliton solution of the d-NLS equation given in (20)
becomes

np(z,t) = ae” 23t exp [—i(2z—[4— aQ]t)] sech [ae_2“3t(:v —41)], (31)
and the approximate dissipative soliton solution we propose in (22) becomes
Napp (2, t) &~ aexp [—i (22 — [4 — a®]t) — pst] sech [a(z — 4t)], (32)

Starting from the initial conditions which can be described by setting t = 0 in (31) and
(32), the numerical solution is obtained by using (29).

abs(n) My = 0.01
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FIGURE 1. Comparison of the numerical (-.), approximate (-x) and Demi-
ray (- -) solutions for u3 = 0.01, a) absolute value b) real part c) imaginary
part.

In the Figure 1 above we present the inter comparison of the numerical, approximate
and Demiray solutions of the d-NLS equation. For this simulation weak dissipation is
considered, so that the value of puz = 0.01 is used in the calculations. It can realized from
the figure that, for the envelope (absolute value), all three solutions are in good agreement
throughout the time stepping. Checking the real parts we can see that at ¢t = (.05,
the approximate solution is in a good agreement with the numerical solution whereas
the Demiray solution is subjected to a phase shift. As the time progresses and becomes
t = 6.00, the approximate solution is also slightly shifted compared to the numerical
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solution, but there is a bigger shift in the Demiray solution compared to the numerical
solution. A similar behavior can also be seen in the imaginary part of the solutions,
however for ¢ = 6.00 we can see that Demiray solution is in a good agreement with
the numerical solutions. Therefore it can be understood that the phase shift between
the Demiray and the numerical solutions behaves in an oscillatory manner. This occurs
since Demiray solutions are solutions in the averaged sense, not in the classical sense.
Furthermore one can realize that similar to the real part, in the imaginary part of the
solution a small phase shift develops between the approximate and the numerical solutions
as time progresses. This is due to the fact that the celerity of approximate solitary wave
solution proposed does not include the amplitude damping.

abs(n) i, =1
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0 —— = - = e —— Approximate
N \// - - -Demiray
-1k | | | i
5 10 15 20 25
L[m]

FIGURE 2. Comparison of the numerical (-.), approximate (-x) and Demi-
ray (- -) solutions for u3 = 1.00, a) absolute value b) real part c) imaginary
part.

In the Figure 2 above we present the inter comparison of the numerical, approximate
and Demiray solutions of the d-NLS equation for strong dissipation, so that the value
of ug = 1 is used in the calculations. It can be realized from the figure that, for the
envelope (absolute value), all three solutions are in good agreement initially at ¢ = 0.05.
As time progresses the amplitude decays but the lobe width of the solitary wave profile
increases in all three models. However the decay in the wave amplitude and the increase
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in the lobe width is bigger for the Demiray soliton. The agreement between the numerical
solution and the approximate solution is better for this case. Checking the real parts we
can again see that at t = 0.05, the approximate solution is in a good agreement with the
numerical solution whereas the Demiray solution is subjected to a phase shift. As the
time progresses and becomes t = 1.50, the approximate solution is shifted compared to
the numerical solution, but there is still a bigger shift in the Demiray solution compared
to the numerical solutions. A similar behavior can also be seen in the imaginary part
of the solutions, however for ¢ = 1.50 we can see that Demiray solution is in a good
agreement with the numerical solutions. Therefore again we see that the phase shift
between the Demiray and the numerical solutions behaves in an oscillatory manner. This
occurs since Demiray solutions are solutions in the averaged sense, not in the classical sense
as discussed before. Furthermore one can realize that a small phase shift develops between
the approximate and the numerical solutions as time progresses since the approximate
solitary wave solution proposed does not include the amplitude dispersion effects. Also
due to a stronger dissipation the decay in the solitary wave height becomes more dominant
compared to Figure 1 as expected. Results obtained above confirms that both the Demiray
and the proposed approximate solutions can be used as representative solutions of the
dissipative nonlinear Schrodinger equation, especially for wave envelope calculations.

4. CONCLUSION AND FUTURE WORK

In this paper various analytical and numerical aspects of the dissipative nonlinear
Schrédinger equation are considered. Decaying solitary wave solutions of sech type derived
by Demiray is reviewed. Also a new approximate dissipative solution of d-NLS equation
is introduced in order to make comparisons. Additionally a split-step Fourier scheme is
proposed for numerical solution of the d-NLS equation and implemented for simulations.
The analytical solutions are compared with the numerical solutions and it is shown that
both the dissipative Demiray solution and the proposed approximate dissipative solution
agrees well with the numerical results especially for the envelope of the wavefield. It is
also shown that some phase mismatch between the analytical and the numerical solutions
can be observed in the real and imaginary parts. This occurs since Demiray solutions are
valid in average sense, not in the pointwise sense and proposed form for the approximate
solution does not include amplitude dispersion. However agreement is very good in the
zero dissipation limit, as expected.
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