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EXISTENCE OF POSITIVE SOLUTIONS FOR A COUPLED SYSTEM

OF HIGHER ORDER FRACTIONAL BOUNDARY VALUE PROBLEMS

K.R. PRASAD1, B.M.B. KRUSHNA2, §

Abstract. The aim of this paper is to establish the existence of at least one positive
solution for a coupled system of higher order two-point fractional order boundary value
problems under suitable conditions. The approach is based on the Guo–Krasnosel’skii
fixed point theorem.
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1. Introduction

Fractional calculus is the field of mathematical analysis which unifies the theories of
integration and differentiation of any arbitrary real order. In describing the properties of
various real materials, the derivatives and integrals of non-integer order are very much
suitable. The fractional order models are more general and adequate than integer order
models. The study of fractional order differential equations has emerged as an impor-
tant area of mathematics. It has wide range of applications in various fields of science
and engineering such as physics, mechanics, control systems, flow in porous media and
viscoelasticity.

Recently, much interest has been created in establishing positive solutions for boundary
value problems associated with ordinary and fractional order differential equations. To
mention the related papers along these lines, we refer to Erbe and Wang [6], Davis, Hen-
derson, Prasad, and Yin [5] for ordinary differential equations, Henderson and Ntouyas
[8, 9], Henderson, Ntouyas, and Purnaras [10] for systems of ordinary differential equa-
tions, Bai and Lü [3], Kauffman and Mboumi [11], Benchohra, Henderson, Ntoyuas, and
Ouahab [4], Khan, Rehman, and Henderson [12], Prasad and Krushna [16, 17], Prasad,
Krushna, and Sreedhar [18] for fractional order differential equations.

In this paper, we establish the existence of at least one positive solution by determining
the values of λ for a coupled system of fractional order differential equations,

Dq1
0+
u(t) + λ g1(t)f1

(
v(t)

)
= 0, t ∈ (0, b), (1)

Dq2
0+
v(t) + λ g2(t)f2

(
u(t)

)
= 0, t ∈ (0, b), (2)
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satisfying two-point boundary conditions,

u(k)(0) = 0, k = 1, 2, · · ·, n− 1, u(b)−mDq3
0+
u(b) = 0, (3)

v(k)(0) = 0, k = 1, 2, · · ·, n− 1, v(b)−mDq3
0+
v(b) = 0, (4)

where q1, q2 ∈ (n − 1, n], n ≥ 2, λ > 0, q3 ∈ (0, 1] and b > 0. fi, gi, i = 1, 2 are given func-
tions, m is a positive real number, D

qj
0+
, j = 1, 2, 3 are the standard Riemann–Liouville

fractional order derivatives.

We assume that the following conditions hold throughout the paper:

(A1) fi : R+ → R+, i = 1, 2 are continuous,
(A2) gi : [0, b] → R+, i = 1, 2 are continuous and does not vanish identically on any

closed subinterval of [0, b],
(A3) mΓ(q1)b

−q3 > Γ(q1 − q3),
(A4) each of

fi0 = lim
x→0+

fi(x)

x
and fi∞ = lim

x→∞

fi(x)

x
, i = 1, 2

exist as positive real numbers.

By a positive solution of the system of fractional order boundary value problem (1)-(4),

we mean
(
u(t), v(t)

)
∈
(
Cn[0, b]× Cn[0, b]

)
satisfying (1)-(4) with u(t) ≥ 0, v(t) ≥ 0, for

all t ∈ [0, b] and (u, v) 6= (0, 0).
The rest of the paper is organized as follows. In Section 2, we construct the Green

functions for the associated linear fractional order boundary value problems and estimate
the bounds for these Green functions. In Section 3, we develop criteria for the existence
of at least one positive solution for a coupled system of fractional order boundary value
problem (1)-(4), by applying the Guo–Krasnosel’skii fixed point theorem. In Section 4, as
an application, we demonstrate our results with an example.

2. Green Functions and Bounds

In this section, we construct the Green functions for the associated boundary value
problems and estimate the bounds for these Green functions, which are needed to establish
the main results.

Lemma 2.1. Let ∆1 =
[
mΓ(q1)b

−q3 − Γ(q1 − q3)
]
bq1−1Γ(q1) 6= 0. If h(t) ∈ C[0, b], then

the fractional order differential equations

Dq1
0+
u(t) + h(t) = 0, t ∈ [0, b], (5)

satisfying the boundary conditions (3) has a unique solution

u(t) =

∫ b

0
G1(t, s)h(s)ds,

where G1(t, s) is the Green’s function for the problem (5), (3) and is given by

G1(t, s) =

{
G11(t, s), 0 ≤ t ≤ s ≤ b,
G12(t, s), 0 ≤ s ≤ t ≤ b, (6)

G11(t, s) =
1

∆1

[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

][
(b− s)t

]q1−1,
G12(t, s) =G11(t, s)−

(t− s)q1−1

Γ(q1)
.
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Proof. Let u ∈ Cn[0, b] be the solution of fractional order boundary value problem given
by (5) and (3). An equivalent integral equation for (5) is given by

u(t) =
−1

Γ(q1)

∫ t

0
(t− s)q1−1h(s)ds+ c1t

q1−1 + c2t
q1−2 + · · ·+ cnt

q1−n.

From u(k)(0) = 0, 1 ≤ k ≤ n − 1, one can determine cn = cn−1 = cn−2 = · · · = c2 = 0.
Then

u(t) =
−1

Γ(q1)

∫ t

0
(t− s)q1−1h(s)ds+ c1t

q1−1,

Dq3
0+
u(t) = −

∫ t

0

(t− s)q1−q3−1

Γ(q1 − q3)
h(s)ds+

c1Γ(q1)

Γ(q1 − q3)
tq1−q3−1.

 (7)

By the condition u(b)−mDq3
a+
u(b) = 0 and (7), we obtain

c1 =
1

∆1

∫ b

0

[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

]
(b− s)q1−1h(s)ds.

Thus the unique solution of the fractional order boundary value problem given by (5) and
(3) is

u(t) =
−1

Γ(q1)

∫ t

0
(t− s)q1−1h(s)ds+

tq1−1

∆1

∫ b

0

[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

]
(b− s)q1−1h(s)ds

=

∫ t

0

[[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

][
t(b− s)

]q1−1
∆1

− (t− s)q1−1

Γ(q1)

]
h(s)ds

+
tq1−1

∆1

∫ b

t

[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

]
(b− s)q1−1h(s)ds.

�

Lemma 2.2. The Green’s function G1(t, s) given by (6) is positive, for all t, s ∈ (0, b).

Proof. Consider the Green’s function G1(t, s) given by (6). By the condition (A3), we
establish the positivity of the Green’s function G1(t, s), for all (t, s) ∈ (0, b)× (0, b). �

Lemma 2.3. The Green’s function G1(t, s) is given in (6) satisfies the
following inequalities

G1(t, s) ≤ G1(b, s), for all (t, s) ∈ [0, b]× [0, b], (8)

G1(t, s) ≥
(
b

4

)q1−1
G1(b, s), for all (t, s) ∈ I × [0, b], (9)

where I =

[
b

4
,
3b

4

]
.

Proof. Consider the Green’s function G1(t, s) given by (6). Then

G1(b, s) =
1

∆1

[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

]
(b− s)q1−1 − 1

Γ(q1)
(b− s)q1−1.

Let 0 ≤ t ≤ s ≤ b. Then

∂G1(t, s)

∂t
=

(q1 − 1)

∆1

[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

]
(b− s)q1−1tq1−2 ≥ 0.
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Let 0 ≤ s ≤ t ≤ b. Then

∂G1(t, s)

∂t

=
(q1 − 1)

∆1

[(
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

)
(b− s)q1−1tq1−2 − (t− s)q1−2

Γ(q1)

]
≥ (q1 − 1)

∆1

[(
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

)
(b− s)q1−1tq1−2 − (t− ts)q1−2

Γ(q1)

]
=

(q1 − 1)tq1−2

∆1

[(
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

)
(b− s)q1−1 − (1− s)q1−2

Γ(q1)

]
≥ 0.

Therefore, G1(t, s) is increasing in t, which implies G1(t, s) ≤ G1(b, s).
Let 0 ≤ t ≤ s ≤ b and t ∈ I. Then

G1(t, s) =
1

∆1

[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

][
(b− s)t

]q1−1
≥ 1

∆1

[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

][
(b− s)t

]q1−1 − (t− ts)q1−1

Γ(q1)

≥tq1−1
[(
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

)(b− s)q1−1

∆1
− (b− s)q1−1

Γ(q1)

]
=tq1−1G1(b, s) ≥

(
b

4

)q1−1
G1(b, s).

Let 0 ≤ s ≤ t ≤ b and t ∈ I. Then

G1(t, s) =
1

∆1

[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

][
(b− s)t

]q1−1 − (t− s)q1−1

Γ(q1)

≥ 1

∆1

[
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

][
(b− s)t

]q1−1 − (t− ts)q1−1

Γ(q1)

≥tq1−1
[(
mΓ(q1)(b− s)−q3 − Γ(q1 − q3)

)(b− s)q1−1

∆1
− (b− s)q1−1

Γ(q1)

]
=tq1−1G1(b, s) ≥

(
b

4

)q1−1
G1(b, s).

�

Lemma 2.4. Let ∆2 =
[
mΓ(q2)b

−q3 − Γ(q2 − q3)
]
bq2−1Γ(q2) 6= 0. If g(t) ∈ C[0, b], then

the fractional order differential equation

Dq2
0+
v(t) + g(t) = 0, t ∈ [0, b], (10)

satisfying the boundary conditions (4) has a unique solution

v(t) =

∫ b

0
G2(t, s)g(s)ds,

where G2(t, s) is the Green’s function for the problem (10), (4) and is given by

G2(t, s) =

{
G21(t, s), 0 ≤ t ≤ s ≤ b,
G22(t, s), 0 ≤ s ≤ t ≤ b, (11)
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G21(t, s) =
1

∆2

[
mΓ(q2)(b− s)−q3 − Γ(q2 − q3)

][
(b− s)t

]q2−1,
G22(t, s) =G21(t, s)−

(t− s)q2−1

Γ(q2)
.

Proof. Proof is similar to Lemma 2.1. �

Lemma 2.5. The Green’s function G2(t, s) given by (11) is positive, for all t, s ∈ (0, b).

Proof. Proof is similar to Lemma 2.2. �

Lemma 2.6. The Green’s function G2(t, s) is given in (11) satisfies the following inequal-
ities

G2(t, s) ≤ G2(b, s), for all (t, s) ∈ [0, b]× [0, b], (12)

G2(t, s) ≥
(
b

4

)q2−1
G2(b, s), for all (t, s) ∈ I × [0, b], (13)

where I =

[
b

4
,
3b

4

]
.

Proof. Proof is similar to Lemma 2.3. �

An order pair
(
u(t), v(t)

)
is a solution of the fractional order boundary value problem

(1)-(4) if and only if u ∈ Cn[0, b] satisfies the following equation

u(t) = λ

∫ b

0
G1(t, s)g1(s)f1

(
v(s)

)
ds, (14)

where

v(t) = λ

∫ b

0
G2(t, s)g2(s)f2

(
u(s)

)
ds.

To establish the existence of at least one positive solution, we will employ the following
fixed point theorem due to Guo–Krasnosel’skii [7, 14].

Theorem 2.1. [7, 14] Let X be a Banach Space, P ⊆ X be a cone and suppose that Ω1,Ω2

are open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that T : P ∩(Ω2\Ω1)→ P
is completely continuous operator such that either

(i) ‖ Tu ‖≤‖ u ‖, u ∈ P ∩ ∂Ω1 and ‖ Tu ‖≥‖ u ‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖ Tu ‖≥‖ u ‖, u ∈ P ∩ ∂Ω1 and ‖ Tu ‖≤‖ u ‖, u ∈ P ∩ ∂Ω2 holds.

Then T has a fixed point in P ∩ (Ω2\Ω1).

3. Existence of at least one positive solution

In this section, we establish the existence of at least one positive solution for a cou-
pled system of fractional order boundary value problem (1)-(4), by applying the Guo–
Krasnosel’skii fixed point theorem.

Let X =
{
u : u ∈ C[0, b]

}
be the Banach space equipped with the norm,

‖u‖ = max
t∈[0,b]

|u(t)|.

Define a cone P ⊂ X by

P =
{
u : u(t) ≥ 0, t ∈ [0, b] and min

t∈I
u(t) ≥ ξ‖u‖

}
,
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where

ξ = min

{(
b

4

)q1−1
,

(
b

4

)q2−1
}
. (15)

Now we define an integral operator T : P → X, for u ∈ P, by

Tu(t) = λ

∫ b

0
G1(t, s)g1(s)f1

(
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr

)
ds (16)

We notice from (A1), (A2) and the Lemma 2.2 that, for u ∈ P, Tu(t) ≥ 0 on [0, b]. Also
for u ∈ P, we have from the Lemma 2.3, that

Tu(t) ≤ λ
∫ b

0
G1(b, s)g1(s)f1

(
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr

)
ds

so that

‖Tu(t)‖ ≤ λ
∫ b

0
G1(b, s)g1(s)f1

(
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr

)
ds. (17)

Next if u ∈ P, we have from the Lemma 2.3 and (17) that

min
t∈I

Tu(t) = min
t∈I

λ

∫ b

0
G1(t, s)g1(s)f1

(
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr

)
ds

≥ ξλ
∫ b

0
G1(b, s)g1(s)f1

(
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr

)
ds

≥ ξ‖Tu‖.

Therefore min
t∈I

Tu(t) ≥ ξ‖Tu‖. Hence Tu ∈ P and so T : P → P. Further the operator T

is a completely continuous by an application of the Arzela–Ascoli’s theorem.
For our results, we define positive constants ω and ρ, by

ω = max

{∫ b

0
G1(b, s)g1(s)ds,

∫ b

0
G2(b, s)g2(s)ds

}
and

ρ = min

{∫
s∈I

ξG1(b, s)g1(s)ds,

∫
s∈I

ξG2(b, s)g2(s)ds

}
,

where ξ is given by (15).

Theorem 3.1. Assume that the conditions (A1)-(A4) hold and if

1

ρmin{f1∞, f2∞}
< λ <

1

ωmax{f10, f20}
. (18)

Then the coupled system of fractional order boundary value problem given by (1)-(4) has
at least one positive solution.

Proof. Let λ be given as in (19). Now ε > 0 be chosen such that

1

ρmin{f1∞ − ε, f2∞ − ε}
≤ λ ≤ 1

ωmax{f10 + ε, f20 + ε}
. (19)

By the condition (A4) of f10 and f20, there exists a constant H1 > 0 such that

f1(x) ≤ (f10 + ε)x, f2(x) ≤ (f20 + ε)x, for 0 ≤ x ≤ H1. (20)
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Let u ∈ P with ‖u‖ = H1. First we have from (20) and the choice of ε,

λ

∫ b

0
G2(s, r)g2(r)f2(u(r))dr ≤λ

∫ b

0
G2(b, r)g2(r)

(
f20 + ε

)
u(r)dr

≤λ
∫ b

0
G2(b, r)g2(r)dr

(
f20 + ε

)
‖u‖

≤‖u‖ = H1.

Consequently we next from (20) and the choice of ε, for 0 ≤ t ≤ b,

Tu(t) =λ

∫ b

0
G1(t, s)g1(s)f1

(
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr
)
ds

≤λ
∫ b

0
G1(b, s)g1(s)

(
f10 + ε

)
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
drds

≤λω
(
f10 + ε

)
H1

≤H1 = ‖u‖.

Therefore ‖Tu‖ ≤ ‖u‖. If we set Ω1 =
{
x ∈ B : ‖x‖ < H1

}
. Then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1. (21)

By the condition (A4) of f1∞, f2∞, there exists a constant H2 > 0 such that

f1(x) ≥ (f1∞ − ε)x and f2(x) ≥ (f2∞ − ε)x, for x ≥ H2. (22)

Let H2 = max

{
2H1,

H2

ξ

}
. Then for u ∈ P and ‖u‖ = H2,

min
t∈I

u(t) ≥ ξ‖u‖ ≥ H2.

Consequently from (22) and the choice of ε, we have

λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr ≥λ

∫
r∈I

ξG2(b, r)g2(r)
(
f2∞ − ε

)
u(r)dr

≥λ
∫
r∈I

ξG2(b, r)g2(r)dr
(
f2∞ − ε

)
‖u‖

≥‖u‖ = H2.

We have from (16) and the choice of ε,

Tu(t) =λ

∫ b

0
G1(t, s)g1(s)f1

(
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr

)
ds

≥λ
∫
s∈I

ξG1(b, s)g1(s)
(
f1∞ − ε

)
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
drds

≥λ
∫
s∈I

ξG1(b, s)g1(s)
(
f1∞ − ε

)
H2ds

≥λρ
(
f1∞ − ε

)
H2

≥H2 = ‖u‖.

Therefore ‖Tu‖ ≥ ‖u‖. If we set Ω2 =
{
x ∈ B : ‖x‖ < H2

}
, then

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2. (23)
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From (21) and (23) we observe that the operator T satisfies the conditions stated in
Theorem 2.1. Hence T has a fixed point. And this implies that the coupled system
of fractional order boundary value problem given by (1)-(4) has at least one positive
solution. �

Theorem 3.2. Assume that the conditions (A1)-(A4) hold and if

1

ρmin{f10, f20}
< λ <

1

ωmax{f1∞, f2∞}
. (24)

Then the coupled system of fractional order boundary value problem given by (1)-(4) has
at least one positive solution.

Proof. Let λ be given as in (24). Now ε > 0 be chosen such that

1

ρmin{f10 − ε, f20 − ε}
≤ λ ≤ 1

ωmax{f1∞ + ε, f2∞ + ε}
.

By the condition (A4) of f10 and f20, there exists an H1 > 0 such that

f1(x) ≤ (f10 − ε)x, f2(x) ≤ (f20 − ε)x, for 0 < x < H1. (25)

Also from the condition (A4) of f20 it follows that f20(0) = 0 and there exists 0 < H2 < H1

such that

λf2(x) ≤ H1∫ b
0 G2(b, s)g2(s)ds

, 0 ≤ x ≤ H2.

Choosing u ∈ P and ‖u‖ = H2, we have

λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr ≤λ

∫ b

0
G2(b, r)g2(r)f2

(
u(r)

)
dr

≤
∫ b
0 G2(b, r)g2(r)H1dr∫ b
0 G2(b, r)g2(r)dr

≤H1.

Then

Tu(t) =λ

∫ b

0
G1(t, s)g1(s)f1

(
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr

)
ds

≥λ
∫
s∈I

ξG1(b, s)g1(s)
(
f10 − ε

)
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
drds

≥λ
∫
s∈I

ξG1(b, s)g1(s)
(
f10 − ε

)
λ

∫
r∈I

ξG2(b, r)g2(r)
(
f20 − ε

)
u(r)drds

≥λ
∫
s∈I

ξG1(b, s)g1(s)
(
f10 − ε

)
λ

∫
r∈I

ξG2(b, r)g2(r)
(
f20 − ε

)
ξ‖u‖drds

≥λ
∫
s∈I

ξG1(b, s)g1(s)
(
f10 − ε

)
λρ
(
f20 − ε

)
ξ‖u‖ds

≥λ
∫
s∈I

ξG1(b, s)g1(s)(f10 − ε)ξ‖u‖ds

≥λρ
(
f10 − ε

)
ξ‖u‖

=ξ‖u‖ ≥ ‖u‖.
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Hence ‖Tu‖ ≥ ‖u‖. If we set Ω1 =
{
x ∈ B : ‖x‖ < H2

}
, then

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω1. (26)

Now we establish in two cases.
Case (i): f2 is bounded. There exists a constant N > 0 such that

f2(x) ≤ N , for x ∈ (0,∞).

Then, for 0 ≤ s ≤ b and u ∈ P,

λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr ≤ Nλ

∫ b

0
G2(b, r)g2(r)dr.

Let M = max

{
f(x) : 0 ≤ x ≤ Nλ

∫ b

0
G2(b, r)g2(r)dr

}
, and let

H3 > max

{
2H2,Mλ

∫ b

0
G1(b, s)g1(s)ds

}
.

Then, for u ∈ P with ‖u‖ = H3,

Tu(t) ≤ λ
∫ b

0
G1(b, s)g1(s)Mds

≤ H3 = ‖u‖.

Therefore ‖Tu‖ ≤ ‖u‖. If Ω2 =
{
x ∈ B : ‖x‖ < H3

}
, then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2. (27)

Case (ii): f2 is unbounded. There exists H3 > max
{

2H2, H1

}
such that

f2(x) ≤ f2(H3), for 0 < x ≤ H3.

Similarly, there exists H4 > max

{
H3,Mλ

∫ b

0
G2(b, r)g2(r)f2(H3)dr

}
such that

f1(x) ≤ f1(H4), for 0 < x ≤ H4.

Choosing u ∈ P with ‖u‖ = H4, we have

Tu(t) =λ

∫ b

0
G1(t, s)g1(s)f1

(
λ

∫ b

0
G2(s, r)g2(r)f2

(
u(r)

)
dr

)
ds

≤λ
∫ b

0
G1(t, s)g1(s)f1

(
λ

∫ b

0
G2(b, r)g2(r)f2

(
H3

)
dr

)
ds

≤λ
∫ b

0
G1(t, s)g1(s)f1

(
H4

)
ds

≤λ
∫ b

0
G1(b, s)g1(s)ds

(
f1∞ + ε

)
H4

≤H4 = ‖u‖.

Therefore, ‖Tu‖ ≤ ‖u‖. For this case, if we set Ω2 =
{
x ∈ B : ‖x‖ < H4

}
, then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2. (28)

Applying Theorem 2.1 to (26), (27) and (28), we obtain that T has a fixed point

u ∈ P ∩ (Ω2\Ω1) together with v(t) = λ

∫ b

0
G2(t, s)g2(s)f2

(
u(s)

)
ds give us a positive
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solution (u, v) of the fractional order boundary value problem (1)-(4) with respect to cone
P , for the chosen values λ. �

4. An example

In this section, as an application, we demonstrate our results with an example.
Consider the coupled system of fractional order boundary value problem,

D3.5
0+u(t) + λ

1

t2 + 1

(305v2 + 15v)(3190− 3129e−5v)

50v + 3
= 0,

t ∈ (0, 1),

 (29)

D3.75
0+ v(t) + λ

1

t2 + 4

(786u2 + 21u)(2176− 2099e−2u)

70u+ 5
= 0,

t ∈ (0, 1),

 (30)

u′(0) = u′′(0) = u′′′(0) = 0, u(1)−D0.75
0+ u(1) = 0, (31)

v′(0) = v′′(0) = v′′′(0) = 0, v(1)−D0.75
0+ v(1) = 0. (32)

By direct calculations, one can determine

f10 = 305, f20 = 323.4, f1∞ = 19459, f2∞ = 24433.37,

ξ = 0.453334, Ω = max{6.4327, 2.5281} and ρ = min{0.77459, 0.223291}.
Applying Theorem 3.1, we get an eigenvalue interval 0.000230148 < λ < 0.0047366,

for which the fractional order boundary value problem (29)-(32) has at least one positive
solution.

5. Conclusion

In this paper we have derived sufficient conditions for the existence of at least one
positive solution for a coupled system of fractional higher order two-point boundary value
problems on a suitable cone in a Banach space. We have determined the eigenvalue
intervals of the parameter for which the two-point fractional order boundary value problem
possess a positive solution.
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