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COMBINING GENETIC ALGORITHM AND SINC-GALERKIN

METHOD FOR SOLVING AN INVERSE DIFFUSION PROBLEM

HASSAN DANA MAZRAEH1, REZA POURGHOLI1, TAHEREH HOULARI1, §

Abstract. A numerical approach combining the use of a genetic algorithm with the
solution of the Sinc-Galerkin method is proposed for the determination of an unknown
time-dependent diffusivity a(t) in an inverse diffusion problem (IDP). At the beginning of
the numerical algorithm, Sinc-Galerkin method is employed to solve the direct diffusion
problem. The present approach is to rearrange the matrix forms of the governing equa-
tions. Then, the genetic algorithm is adopted to find the solution of IDP. The genetic
algorithm used in this work is not a classical genetic algorithm. Instead, the applica-
tion of the genetic algorithm to this discrete-time optimal control problem is called a
real-valued genetic algorithm(RVGA). Some numerical experiments confirm the utility
of this algorithm as the results are in good agreement with the exact data. Results show
that a reasonable estimation can be obtained by combining the genetic algorithm and
Sinc-Galerkin method within a CPU with clock speed 2.7 GHz.
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1. Introduction

Solution of an inverse diffusion problem requires to determine an unknown diffusion co-
efficient from an additional information. These new data are usually given by adding small
random errors to the exact values from the solution to the direct problem. Inverse diffu-
sion problems appear in many important scientific and technological fields [1–9]. Hence
analysis, design, implementation and testing of inverse algorithms are also great scientific
and technological interests. In general, inverse problems are ill-posed, that is, their solu-
tion does not satisfy the general requirement of existence, uniqueness, and stability under
small changes to the input data. To overcome such difficulties, a variety of techniques for
solving inverse diffusion problems have been proposed. Therefore, many researchers have
focused on the design of inverse algorithms to solve such problems [10–18].
Existing methods try to find an unknown parameter which solves the relevant diffusion
problem. So, we can consider an unknown parameter as a vector that approximates an
unknown parameter. When we talk about finding a vector to solve a problem, we can
use search methods. One of the most powerful search method is Genetic Algorithm that
primarily developed by Holland. Also, the genetic algorithm is a very efficient tool for
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some classical methods that need an initial vector to solve a problem. In this case, the
responsibility of a genetic algorithm is to find the best vector for the classic method. The
various genetic algorithms are widely used in science and engineering. Fortunately, the
parallel implementation of the genetic algorithm is easy and the parallel execution of this
algorithm gives the better estimation of the solutions and better execution time [19]. In
this work, to solve the IDP by using the genetic algorithm, the unknown function will be
guessed and we don’t need the regularization. This will improve the execution time. In
recent years, some researches have been done to solve IDP by using the genetic algorithm
and the Sinc-Galerkin method [20,21].
In the most of the above papers, the numerical results are given based on noiseless
data [6, 8]. This difficulty is overcome in this paper and the results are computed based
on noisy data. Furthermore, to solve the IDP by using the genetic algorithm, unknown
time-dependent diffusivity a(t) will be guessed and we don’t need the regularization. This
will improve the execution time.
The plan of this paper is as follows. In section 2, we formulate an inverse diffusion prob-
lem. Section 3 contains four subsections and outlines some of the main properties of sinc
functions and sinc method that are necessary for the formulation of the direct diffusion
problem. Furthermore, in this Section, we solve direct problem with this method. In
Sections 4 and 5, the genetic algorithm is proposed for the determination of an unknown
time-dependent diffusivity a(t) in IDP . Finally, Some numerical experiments will be given
in section 6.

2. Mathematical formulation

In this section, we consider the following an IDP in the dimensionless form

Tt(x, t) = a(t)Txx(x, t), 0 < x < 1, 0 < t < tM (2.1a)

T (x, 0) = f(x), 0 ≤ x ≤ 1, (2.1b)

T (0, t) = p(t), 0 ≤ t ≤ tM , (2.1c)

T (1, t) = q(t), 0 ≤ t ≤ tM , (2.1d)

and the overspecified condition

T (xa, t) = s(t), 0 ≤ t ≤ tM , (2.1e)

where f(x), p(t), and q(t) are continuous known functions, and tM represents the final
time of interest for the time evolution of the problem, while the function a(t) is unknown
which remains to be determined from some interior temperature measurements by using
the genetic algorithm.
Problem (2.1) can be solved at least-square sense and a cost function can be defined as a
summation of squared differences between measured temperatures and calculated values
of T by considering guesses functions for a(t):

f(Chromosome) =
m∑
j=1

(Tj − sj)2, (2.2)

where Tj , j = 1, 2, 3, ...,m, are obtained from solving nonlinear direct parabolic problem
by considering guess a(t) and applying the Sinc-Galerkin method, and sj = s(tj), j =
1, 2, 3, ...,m, are the interior temperatures. To find the optimal solution a(t), equation
(2.2) should be minimized.
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3. Sinc-Galerkin method for solving the direct diffusion problem

In this section, we will review sinc function properties and the sinc method. A compre-
hensive review concerning sinc function properties as well as sinc method can be found
in [22,23].

Let C denote the set of all complex numbers. The sinc cardinal or sinc function is
defined for each z ∈ C as follows:

sinc(z) ≡

{
sin(πz)
πz , z 6= 0,

1, z = 0.
(3.1)

For h > 0 and any integer k, the translated sinc function with evenly spaced nodes is
denoted as S(j, h)(z) and defined by

S(j, h)(z) ≡ sinc(z − jh
h

), j = 0,±1,±2, . . . . (3.2)

The sinc functions are cardinal for the interpolating points zk = kh in the sense that

S(j, h)(kh) = δ
(0)
jk =

{
1, k = j,

0, k 6= j.
(3.3)

If f is a function defined on the real line R then the cardinal function of f , denoted as
C(f, h)(x), is as follows:

C(f, h)(x) ≡
∞∑

j=−∞
f(jh)S(j, h)(x). (3.4)

Whenever the series in (3.4) converges, the cardinal function interpolates f at the points
{nh}∞n=−∞. The series was addressed in [24] and analyzed in details in [25].

The truncated cardinal series, denoted as CM,N (f, h)(x), is defined by

CM,N (f, h)(x) ≡
N∑

j=−M
f(jh)S(j, h)(x). (3.5)

We will now introduce two conformal mappings to transform the eye-shaped and wedge-
shaped domains to an infinite strip domain.To do this, we define the function

ν = Φ(z) = ln(
z

1− z
).

This function Φ provides a conformal transformation of the ”eye-shaped” spatial domain
in the z-plane

DE = {z ∈ C : |arg(
z

1− z
)| < d},

onto the infinite strip

Ds = {w = u+ iv : |v| < d ≤ π

2
},

in the w-plane. This is shown in figure 1
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Figure 1. Relationship between the domains DE and Ds

We define the translated Sinc basis functions

Si(z) = S(i, h) ◦ Φ(z) ≡ sinc(Φ(z)− ih
h

). (3.6)

For the temporal space, we define the function Υ(t) = ln(t) which is a conformal
mapping from Dw the ”wedge-shaped” temporal domain onto Ds, the infinite strip, where:

Dw = {t = r + is : |arg(t)| < d ≤ π

2
},

this is shown in figure 2.

Figure 2. Relationship between the domains Dw and Ds

The basic functions are derived from the composite translated Sinc functions,

S(j, h) ◦Υ(t) ≡ sinc(Υ(t)− jh
h

). (3.7)

for t ∈ Dw.
The function z = Φ−1(v) = ev

1+ev is an inverse mapping of v = Φ(z).

We define the range of Φ−1 on the real line as

Γ = {ψ(u) = Φ−1(u) ∈ DE : −∞ < u <∞}.
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3.1. Interpolation and quadrature rules for approximation:
For problems on a subinterval Γ, of the real line, we employ a conformal map Φ for which
Φ(Γ) = R. Suppose d > 0 and let Φ be a conformal map of the domain D onto Ds. Then
over a subinterval Γ = Φ−1(R), we apply the following methods of interpolation [22]

f(z) ≈
∞∑

k=−∞
f(kh)S(k, h) ◦ Φ(z). (3.8)

and quadrature: ∫
Γ
f(z) ≈ h

∞∑
k=−∞

f(zk)/Φ
′(zk), (3.9)

The sinc gride points zk ∈ (0, 1) in DE will be denoted by xi because they are real. For
the evenly spaced nodes {ih}∞i=−∞ on the real line, the image which corresponds to these
nodes is denoted by

xi = Φ−1(ih) =
eih

1 + eih
, i = ±1,±2, . . .

and in a same way

tj = Υ−1(jh) = ejh, j = ±1,±2, . . . .

The Sinc-Galerkin method actually requires the evaluated derivatives of sinc basis func-
tions S(i, h) ◦ Φ(x) at the sinc nodes, x = xk.The rth derivative of S(i, h) ◦ Φ(x), with
respect to Φ, evaluated at the nodal point xk is denoted by

1

hr
δ

(r)
ik ≡

dr

dΦr
[S(i, h) ◦ Φ(x)] |x=xk . (3.10)

Theorem 3.1. Let Φ be a conformal one-to-one map of the simply connected domain DE

onto Ds then

δ
(0)
ik = [S(i, h) ◦ Φ(x)] |x=xk=

{
1, k = j;

0, k 6= j;
(3.11)

δ
(1)
ik = h

d

dΦ
[S(i, h) ◦ Φ(x)] |x=xk=

{
0, k = j;
(−1)(k−j)

(k−j) , k 6= j;
(3.12)

and

δ
(2)
ik = h2 d2

dΦ2
[S(i, h) ◦ Φ(x)] |x=xk=

{−π2

3 , k = j;
−2(−1)(k−j)

(k−j)2 , k 6= j.
(3.13)

Proof. See [22]. �

The expressions in (3.10) for each i and k can be stored in a matrix

I(p) = [δ
(p)
ik ] for p = 0, 1, 2:

I(0) = [δ
(0)
ik ] =

1 · · · 0
...

. . .
...

0 · · · 1

 = I, (3.14)
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I(1) = [δ
(1)
ik ] =



0 −1 1
2 · · · (−1)m−1

m−1

1
...

−1
2

. . . 1
2

... −1
(−1)m

m−1 · · · −1
2 1 0


, (3.15)

I(2) = [δ
(2)
ik ] =



−π2

3 2 −2
22
· · · −2(−1)m−1

(m−1)2

2
...

−2
22

. . . −2
22

... 2
−2(−1)m−1

(m−1)2
· · · −2

22
2 −π2

3


, (3.16)

the above matrices are the m×m(m = M +N + 1) Toeplitz matrices where

−M ≤ k ≤ N, −M ≤ i ≤ N.
If function g is evaluated at the sinc nodes x = xk for −Mx ≤ i ≤ Nx then the mx ×mx

square diagonal matrix Dmx(g) is written by

Dmx(g) =


g(x−Mx)

. . .

g(x0)
. . .

g(xNx)

 . (3.17)

3.2. Parameter selections for the Sinc-Galerkin method.
The matrices that comprise the discrete system in the Sinc-Galerkin method are full matri-
ces. More sinc grid points lead to larger matrices and make for an expensive computation.
Some cases found in [26] show how to choose an appropriate sinc grid in space and time,
and those selections will be used here. If the exact solution satisfies the condition

|u(x, t)| ≤ Cxαs+ 1
2 (1− x)βs+ 1

2 tγs+ 1
2 e−δt, (3.18)

for(x, t) ∈ (0, 1)× (0,∞), we should make the following selections

Nx = [|αs
βs
Mx + 1|], Mt = [|αs

γs
Mx + 1|], Nt = [|1

h
ln(

αs
δ
Mxh) + 1|], (3.19)

where [|.|] denotes the greatest integer operation, h ≡ hx = ht and

h = (
πd

αsMx
)
1
2 . (3.20)

For a given problem with a known real or complex solution, one can determine α, β, γ,
and δ using (3.18) where

αs = α− 1

2
and βs = β − 1

2
.

Then (3.19) and (3.20) provide the computational parameters. In practice, one sets α =
β = γ = 1 and d = π

2 . Then from (3.19) and (3.20), Mx = Nx = Nt and h = π
2
√
Mx

,

respectively. Numerical experiments suggest the choice Nt = 1
2Mx for the infinite time



H.D.MAZRAEH, R.POURGHOLI, T.HOULARI: COMBINING GENETIC ALGORITHM ... 39

interval instead of that given in (3.19).To illustrate the performance of the method, we
define ‖pξ‖, ‖qξ‖ and ‖Eξ‖ for reporting error and convergence results between a true
solution p(x, t) + iq(x, t) and a Sinc-Galerkin approximate solution ua(x, t) = pa(x, t) +
iqa(x, t) on the sinc grid ξ with h = hx = ht as

ξ = {(xi, tj) : xi =
eih

1 + eih
, tj = ejh,−Mx − 1 ≤ i ≤ Nx + 1,−Mt ≤ j ≤ Nt + 1}.

3.3. Direct Problem for the Diffusion Equation.

The general form of the diffusion equation is as follow:

P (2)T (x, t) ≡ Tt(x, t)− a(t)Txx(x, t) = f(x, t), 0 < x < 1, 0 < t <∞, (3.21a)

T (x, 0) = φ(x), 0 ≤ x ≤ 1, (3.21b)

T (0, t) = p(t), 0 ≤ t ≤ ∞, (3.21c)

T (1, t) = q(t), 0 ≤ t ≤ ∞, (3.21d)

φ(x) is a continuous known function, g(t) and q(t) are infinitely differentiable known
functions.

We now show the application of the fully Sinc-Galerkin method to solve the direct
problem for the diffusion equation. The approximate solution is written as

umx,mt(x, t) =

Nt∑
j=−Mt−1

Nx+1∑
i=−Mx−1

uijχi(x)θj(t), (3.22)

where mx = Mx + Nx + 3 and mt = Mt + Nt + 2. The basis functions {sij(x, t)} for

−Mx − 1 ≤ i ≤ Nx + 1,−Mt − 1 ≤ j ≤ Nt are given as the product of basis functions for
the appropriate one-dimensional problem. They are given by

sij(x, t) ≡ [s(i, hx) ◦ Φ(x)][s(i, ht) ◦Υ(t)],

where

Φ(x) = ln(
x

1− x
), Υ(t) = ln(t). (3.23)

Two linear functions are added to the sinc basis in the spatial dimension

χi(x) =


1− x, i = −Mx − 1,

s(i, h) ◦ Φ(x), −Mx ≤ i ≤ Nx,

x, i = Nx + 1,

and one rational function is appended to the temporal base

θj(t) =

{
t+1
t2+1

, j = −Mt − 1,

s(j, h) ◦Υ(t), −Mt ≤ j ≤ Nt.

Interpolating the boundary and initial conditions in (3.22) dictates that

umx,mt(0, t) =

Nt∑
j=−Mt−1

u−Mx−1,jθj(t) = p(t),
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umx,mt(1, t) =

Nt∑
j=−Mt−1

uNx+1,jθj(t) = q(t),

umx,mt(x, 0) =

Nx+1∑
i=−Mx−1

ui,−Mt−1χi(x) = φ(x).

The sinc approximation to (3.22) is defined by

umx,mt(x, t) =

Nt∑
j=−Mt

Nx∑
i=−Mx

uijsij(x, t) + g∗(t)χ−Mx−1(x)+

q∗(t)χNx+1(x) + φ(x)θ−Mt−1(t),

where

p∗(t) = p(t)− φ(0)θ−Mt−1(t),

q∗(t) = q(t)− φ(1)θ−Mt−1(t),

and the intervals of i and j confined to −Mx ≤ i ≤ Nx and −Mt ≤ j ≤ Nt, respectively.
So mx = Mx +Nx + 1 and mt = Mt +Nt + 1.

Define the inner product by

< η, ζ >≡
∫ ∞

0

∫ 1

0
η(x, t)ζ(x, t)ν(x)ω(t)dxdt,

where the product ν(x)ω(t) plays the role of a weight function. Assume that the product
is given by

ν(x)ω(t) =

√
Υ′

Φ′
,

where

ω(t) =
√

Υ′, ν(x) =
1

Φ′
.

Since p∗(t) and q∗(t) are known functions, the orthogonalization of the residual

< P (2)umx,mt − f, skl >= 0,

for −Mx ≤ k ≤ Nx, −Mt ≤ l ≤ Nt may be written

< P (2)uh − f∗, skl >= 0, (3.24)

where the homogeneous part of the approximate solution is given by

uh(x, t) =

Nt∑
j=−Mt

Nx∑
i=−Mx

uijsij(x, t),

f∗ is also given by

f∗(x, t) = f(x, t)− P (2)[p∗(t)χ−Mx−1(x) + q∗(t)χNx+1(x) + φ(x)θ−Mt−1(t)]. (3.25)
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3.4. Discrete System Assembly.
Now we want to discrete the system of (3.24):

< ut, skl > − < a(t)uxx, skl > − < f∗, skl >= 0.

The inner product with sinc basis elements is given by

< ut, skl >=

∫ ∞
0

∫ 1

0
utsklν(x)ω(t)dxdt.

This expression contains derivative of u with respect to t. We can remove derivative from
the dependent variable u by integrating by parts, once doing this in t. We obtain the
following term

BT1 −
∫ ∞

0

∫ 1

0
uh(x, t)[s(k, hx) ◦ Φ(x)]ν(x)([s(l, ht) ◦Υ(t)]ω(t))′dxdt,

where the boundary term

BT1 =

∫ 1

0
[s(k, hx) ◦ Φ(x)]ν(x)([s(l, ht) ◦Υ(t)]ω(t)uh(x, t)) |∞t=0 dx = 0.

If we do the similar calculations for < a(t)uxx, skl >, then we have

< a(t)uxx, skl >=

∫ ∞
0

∫ 1

0
a(t)uxxsklν(x)ω(t)dxdt.

This expression contains the derivatives of the dependant variable u, twice in x. We can
similarly remove uxx by integrating by parts, as follows:

BT2 −
∫ ∞

0

∫ 1

0
a(t)uh(x, t)[s(l, ht) ◦Υ(t)]ω(t)([s(k, hx) ◦ Φ(x)]ν(x))′′dxdt,

where the boundary term

BT2 =

∫ ∞
0

a(t)[s(l, ht) ◦Υ(t)]ω(t)([s(k, hx) ◦ Φ(x)]ν(x))′uh(x, t)) |1x=0 dt

−
∫ ∞

0
a(t)[s(l, ht) ◦Υ(t)]ω(t)([s(k, hx) ◦ Φ(x)]ν(x)ux(x, t)) |1x=0 dt

= 0.

Remove the derivatives from the dependent variable u by integrating by parts; twice in x
and once in t, to arrive at the identity∫ ∞

0

∫ 1

0
uh(x, t)(− ∂

∂t
− ∂2

∂x2
)(sk(x)sl(t)ν(x)ω(t))dxdt =∫ ∞

0

∫ 1

0
f∗sk(x)sl(t)ν(x)ω(t)dxdt.

We apply the quadrature rule [22] to the iterated integrals and delete the error terms.We
also replace uh(x, t) by uij and dividing by hxht. Hence, we obtain the following discrete
sinc system:

a(tl) ω(tl)

Υ′(tl)

Nx∑
−Mx

[− 1

h2
x

δ
(2)
ki Φ′(xi)ν(xi)−

1

hx
δ

(1)
ki (

Φ′′(xi)ν(xi)

Φ′(xi)
+2ν ′(xi))−δ(0)

ki

ν ′′(xi)

Φ′(xi)
]uil (3.26)

+
ν(xk)

Φ′(xk)

Nt∑
j=−Mt

[− 1

ht
δ

(1)
lj ω(tj) + δ

(0)
lj

ω′(tj)

Υ′(tj)
]ukj (3.27)
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=
f∗(xk, tl)ν(xk)ω(tl)

Φ′(xk)Υ′(tl)
. (3.28)

This system is identical to the system generated by orthogonalizing the residual via <
p(2)uh − f∗, skl >= 0. We apply the notation of section 2 and obtain the following matrix
form

[
−1

h2
x

I(2)
mx
D(Φ′ν)− 1

hx
I(1)
mx
D(

Φ′′ν

Φ′
+ 2ν ′)− I(0)

mx
D(

ν ′′

Φ′
)]U (2)D(

a ω

Υ′
)

+D(
ν

Φ′
)U (2)[

−1

ht
I(1)
mt
D(ω) + I(0)

mt
D(

ω′

Υ′
)]

= D(
ν

Φ′
)F (2)D(

ω

Υ′
),

premultiplying by D(Φ′) and postmultiplying by D(Υ′) yields the equivalent system

D(Φ′)[
−1

h2
x

I(2)
mx
D(Φ′ν)− 1

hx
I(1)
mx
D(

Φ′′ν

Φ′
+ 2ν ′)− I(0)

mx
D(

ν ′′

Φ′
)]U (2)D(a ω)

+D(ν)U (2)[
−1

ht
I(1)
mt
D(ω) + I(0)

mt
D(

ω′

Υ′
)]TD(Υ′)

= D(ν)F (2)D(ω).

It is helpful to single out the portion of the coefficient matrix in this system that corre-
sponds to the second derivative. This is defined by

A(v) ≡ −1

h2
x

I(2)
mx
− 1

hx
I(1)
mx
D(

Φ′′

(Φ′)2
+

2ν ′

Φ′ν
)−D(

ν ′′

(Φ′)2ν
), (3.29)

B(
√

Υ′) =
−1

ht
I(1)
mt
−D(

ω′

ωΥ′
) =
−1

ht
I(1)
mt

+D(
1

2
), (3.30)

the second equality follows from ω′

ωΥ′ = Υ′′

2(Υ′)2 ≡
−1
2 , where

Υ = ln(t).

The representation of the system is simplified upon recalling the definition of the matrix
A(ν) and B(

√
Υ′) in (3.29) and (3.30), respectively.

Finally we reach to the form as follow:

Axν
(2)
D(a(t)) + ν

(2)
BT
t = G(2), (3.31)

where

Ax = D(Φ′)A(v)D(Φ′) = D(Φ′)[
−1

h
I(2) +D(

−1

(Φ′)
3
2

(
1√
Φ′

)′′)]D(Φ′),

Bt = D((Υ′)
1
2 )[−1

h
I(1) +D(

1

2
)]D((Υ′)

1
2 ),

ν
(2)

= D(ν)U (2) = D((Φ′)
−1
2 )U (2),

G(2) = D(ν)F (2) = D((Φ′)
−1
2 )F (2).

In the latter, the matrix F (2) is now the matrix of point evaluations of f∗ in (3.25). We
discretize the system and find it’s matrix form and transform obtained equation to follow
equation by using theorem A.33 in [22];

AΘ = B,

where A is a matrix and B is a vector.
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Thus the linear system corresponding to the sinc coefficient uij can be expressed as

AΘ = B. (3.32)

The Matrix A is ill-conditioned. On the other hand, as g(t) is affected by measurement
errors, the estimate of Θ by (3.32) will be unstable so that the Tikhonov regularization
method must be used to control this measurement errors. The Tikhonov regularized
solution ( [27], [28], [29], and [30]) to the system of linear algebraic equation (3.32) is
given by

zα(Θ) = ‖AΘ−B‖22 + α‖R(s)Θ‖22.
On the case of the zeroth -, first-, and second-order Tikhonov regularization method the
matrix R(s), for s = 0, 1, 2, is given by, see e.g. [31]:

R(0) = IM1×M1 ∈ RM1×M1 ,

R(1) =


−1 1 . . . 0 0 0
0 −1 1 . . . 0 0
...

...
...

...
...

...
0 0 . . . −1 1 0
0 0 . . . 0 −1 1

 ∈ R(M1−1)×M1 ,

R(2) =


1 −2 1 0 . . . 0 0
0 1 −2 1 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 1 −2 1 0
0 0 . . . 0 1 −2 1

 ∈ R(M1−2)×M1 ,

where M1 = (γ + 1)× (ι+ 1).
Therefore, we obtain the Tikhonov regularized solution of the regularized equation as

Θα =
[
ATA+ α(R(s))TR(s)

]−1
ATB.

In our computation, we use the GCV scheme to determine a suitable value of α ( [32], [33]
and [34]).

Theorem 3.2. For each fixed t, let F (x, t) ∈ B(DE) and h > 0. Let Φ and Υ be one-to-one
conformal maps of the domains DE and Dw onto Ds, respectively. Let xi = Φ−1(ihx), tj =
Υ−1(jht) and Γx = Φ−1(R),Γt = Υ−1(R). Assume there are positive constants αx, βx and
Cx(t) so that

| F (x, t)

Φ′(x)
|≤ Cx(t)

{
exp(−αx | Φ(x) |, x ∈ Γ

(x)
a ,

exp(−βx | Φ(x) |, x ∈ Γ
(x)
b ,

where

Γ(x)
a ≡ {x ∈ Γx : Φ(x) = u ∈ (−∞, 0)}, Γ

(x)
b ≡ {x ∈ Γx : Φ(x) = u ∈ (0,∞)}.

Also for each fixed x, letF (x, t) ∈ B(Dw)and assume there are positive constants αt, βt
and Ct(x) so that

| F (x, t)

Υ′(x)
|≤ Ct(x)

{
exp(−αt | Υ(t) |, x ∈ Γ

(t)
a ,

exp(−βt | Υ(t) |, x ∈ Γ
(t)
b ,

where

Γ(t)
a ≡ {t ∈ Γt : Υ(t) = u ∈ (−∞, 0)}, Γ

(t)
b ≡ {t ∈ Γt : Υ(t) = u ∈ (0,∞)}.
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Then the sinc trapezoidal quadrature rule is∫
Γt

∫
Γx

F (x, t)dxdt = hxht

Nx∑
i=−Mx

Nt∑
j=−Mt

F (x, t)

Φ′(xi)Υ′(tj)
+O(exp(−αxMxhx))

+O(exp(−βxNxhx)) +O(exp(
−2πd

hx
)) +O(exp(−αtMtht)) +O(exp(−βtNtht))

+O(exp(
−2πd

ht
)).

Hence, make the selections

Nx = [| αx
βx
Mx + 1 |], Mt = [| αx

αt
Mx + 1 |], Nt = [| αx

βt
Mx + 1 |]

where h ≡ hx = ht and

h =

√
2πd

αxMx

and the exponential order of the sinc trapezoidal quadrature rule is O(e−(
√

2πdαxMx)
1
2 ).

Corollary.An important special case housed in the previous theorem occurs when the
double integrand has the form G(x, t)S(p, hx)◦Φ(x)S(q, ht)◦Υ(t). Due to the interpolation

S(p, hx) ◦ Φ(x) = S(p, hx)(ihx) = δ
(0)
ip and S(q, ht) ◦Υ(t) = S(q, ht)(jht) = δ

(0)
jq ,

the sinc quadrature rule is a weighted point evaluation to the order of the method∫
Γt

∫
Γx

G(x, t)S(p, hx) ◦ Φ(x)S(q, ht) ◦Υ(t)dxdt = hxht
G(xp, tq)

Φ′(xp)Υ′(tq)

+O(exp(−2πd
hx

)) +O(exp(−2πd
ht

)).

Proof. See [26]. �

4. Genetic algorithm

Genetic algorithms, primarily developed by Holland [35], have been successfully applied
to various optimization problems. It is essentially a searching method based on the Dar-
winian principles of biological evolution. Genetic algorithm is a stochastic optimization
algorithm which employs a population of chromosomes; each of them represents a possible
solution. By applying genetic operators, each successive incremental improvement in a
chromosome becomes the basis for the next generation. The process continues until the
desired number of generations has been completed or the predefined fitness value has been
reached.
Typically binary coding is used in classic genetic algorithm, where each solution is en-
coded as a chromosome of binary digits. Each member of the population represents an
encoded solution in the classic genetic algorithm. For many problems, this kind of coding
is not natural. The genetic algorithm used in this work is not a classic genetic algorithm.
Instead, the application of genetic algorithm to this discrete-time optimal control problem
is called a real-valued genetic algorithm(RVGA). The continuous function is discrete for
numerical computation and simulated by a chromosome. The value of each gene is a real
number and indicates the heat generation at each time step [36].
The procedure of a RVGA is as follows:

Step 1. Generate at random an initial population of chromosomes.
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Step 2. Evaluate the fitness of each chromosome in the population.
Step 3. Select chromosomes, based on the fitness function, for recombination.
Step 4. Recombine pairs of parents to generate new chromosomes.
Step 5. Mutate the resulting new chromosomes.
Step 6. Evaluate the fitnesses of new chromosomes.
Step 7. Update population.
Step 8. Repeat Step 3 to Step 7, until the fitness function is convergent or less than a

predefined value.

5. A modified RVGA to determine a(t)

In this paper, we have used a modified RVGA to determine a(t). We guess a(t) by

a(t) = a×(
b+ c× x+ d× x2

e+ f × x+ g × x2
) equation. Where a, b, c, d, e, f and g are coefficients, that

the modified RVGA must find them. In the modified RVGA, chromosomes are encoded as
real-valued vectors. J-th element of each chromosome is j-th coefficient. We consider each
element of chromosomes as a gene. That gp,j is j-th gene of chromosome of p. For finding
optimal solution of a(t), the Equation (2.2) should be minimum. For this purpose, we
consider Equation (2.2) as fitness function and calculate simulated s by solving nonlinear
direct heat parabolic problem by sinc-galerkin method for each chromosome. At the end
of algorithm, the chromosome by lowest fitness is the best solution of a(t). To improve
the performance of RVGA, we added a new step to algorithm after ”mutation” operator,
for modifying new chromosomes at each iteration.
The procedure of a modified RVGA is as follows:

Step 1. Generate at random an initial population of chromosomes.
Step 2. Evaluate the fitness of each chromosome in the population.
Step 3. Select some chromosomes as parents by tournament selection.
Step 4. For generating pair of new chromosomes, pair of parents crossover together as

follow:

gch1,j = α× gp1,j + (1− α)× gp2,j , j = 1, 2, 3, ...,M,

gch2,j = β × gp1,j + (1− β)× gp2,j , j = 1, 2, 3, ...,M.

Where p1 illustrates first parent, p2 illustrates second parent, ch1 illustrates first
new chromosome, ch2 illustrates second new chromosome, α and β are random
numbers in [−0.25, 1.25].

Step 5. For applying ”Mutation” operation on new chromosomes, selecting a gene of each
new chromosome randomly and each element of genes adding by random number.

Step 6. Finding the first best gene between new chromosomes and copy that gene to
first gene of all chromosomes. Then finding the second best gene between new
chromosomes and copy that gene to second gene of all chromosomes. Continue
this procedure for all genes. Now all new chromosomes are same. For generating
new hopeful chromosomes, genes of second to end chromosomes replace by genes
of first chromosome adding by random small values.

Step 7. Evaluate the fitness of new chromosomes.
Step 8. Update the population.
Step 9. Repeat Step 3 to Step 8, until the fitness function is convergent or less than a

predefined value.
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6. Numerical results

We are going to demonstrate numerically, some of results for the unknown function
a(t) in the IDP (2.1). The aim of this section is to illustrate the applicability of the
present method described in Section 5 for solving IDP. As expected the IDP is ill-posed
and therefore it is necessary to investigate the stability of the present method by giving
some test problems.
In this section, we have two examples, for 0 < x < 1, 0 < t < 1.

Our first example is

Example 6.1.

Tt(x, t) = a(t)Txx(x, t), 0 < x < 1, 0 < t < tM (6.1a)

T (x, 0) = sin(πx), 0 ≤ x ≤ 1, (6.1b)

T (0, t) = 0, 0 ≤ t ≤ tM , (6.1c)

T (1, t) = e−π
2t2(sin(π)), 0 ≤ t ≤ tM , (6.1d)

and the overspecified condition

s(tj) = U(0.9, tj) + σR, j = 1, 2, 3, · · · , 9, (6.1e)

where tj ’s are the sinc times nodes, the exact a(t) is 2t and the exact T (x, t) is

e−π
2t2(sin(πx)).

The second example is

Example 6.2.

Tt(x, t) = a(t)Txx(x, t), 0 < x < 1, 0 < t < tM (6.2a)

T (x, 0) =
1

3
e−x, 0 ≤ x ≤ 1, (6.2b)

T (0, t) =
t2 + 1

3
, 0 ≤ t ≤ tM , (6.2c)

T (1, t) = e−1(
t2 + 1

3
), 0 ≤ t ≤ tM , (6.2d)

and the overspecified condition

s(tj) = U(0.9, tj) + σR, j = 1, 2, 3, · · · , 9, (6.2e)

where, tj ’s are the sinc times nodes, the exact value of a(t) is
2t

t2 + 1
and the exact value

of T (x, t) is e−x(
t2 + 1

3
).

The experimental data s(tj) (measured temperatures) are obtained from the exact so-
lution of the direct problem by adding a random perturbation error to the exact solution
of the direct diffusion problem in order to generate noisy data, where σ = 0.001 and R is
a random value in (0, 1).

Remark 6.1. In an inverse parabolic problem, there are two sources of error in the esti-
mation. The first source is the unavoidable bias deviation (or deterministic error). The
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second source of error is the variance due to the amplification of measurement errors (sto-
chastic error). The global effect of deterministic and stochastic errors is considered in the
mean squared error or total error, [12].

S =
[ 1

(N − 1)

N∑
i=1

(âi − ai)2
] 1

2
, (6.3)

where N is the total number of estimated values, âi is calculated values from guessed a(t)
and ai is exact values of a(t).

In our examples, here, a population of 20 chromosomes of 7 genes(a, b, c, · · · , g) is used
as the initial guess to obtain for numerical results of modified RVGA. Table 1 presents the
results for 1 to 1000 generations for the first example and Table 2 presents the results for
1 to 1000 generations for the second example. Note that S calculated by 10 total number
of points.

Gen. Best fitness Time(s) S
1 4.1270e− 02 14.8147 1.2058

100 8.1576e− 04 244.9134 0.9575
200 5.9278e− 04 458.4853 0.8002
300 4.2176e− 04 702.1418 0.6557
400 6.0035e− 05 928.8491 0.1548
500 7.5774e− 05 1149.7431 0.2227
600 5.8481e− 06 1382.1371 0.0482
700 7.6551e− 06 1614.9502 0.0646
800 1.7093e− 06 1817.3170 0.0175
900 3.1832e− 07 2039.2769 0.0045
1000 2.4076e− 07 2260.1846 0.0018

Table 1. The results of modified RVGA for a population of 20 chromo-
somes of 7 genes for 1 to 1000 generations for the first example.

Gen. Best fitness Time(s) S
1 1.6261e− 01 27.0602 1.6193

100 7.5126e− 03 364.2550 0.5059
200 6.9907e− 04 595.8909 0.4445
300 5.4721e− 04 828.1386 0.4294
400 2.5750e− 04 1055.8407 0.1789
500 2.4352e− 04 1288.3499 0.1466
600 4.7328e− 05 1526.3516 0.0830
700 5.8526e− 06 1753.5497 0.0757
800 3.8044e− 06 1986.5678 0.0539
900 1.2990e− 06 2201.5307 0.0162
1000 2.0151e− 07 2371.3372 0.0098

Table 2. The results of modified RVGA for a population of 20 chromo-
somes of 7 genes for 1 to 1000 generations for the second example.

Figure 3 and 4 show the exact and numeric a(t) for the first and the second examples
respectively by implementing modified RVGA for 1000 generation.
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Figure 3. The exact and numeric a(t) for the first example by implement-
ing modified RVGA for 1000 generation.

Figure 4. The exact and numeric a(t) for the second example by imple-
menting modified RVGA for 1000 generation.

7. Conclusion

The present study successfully applies a numerical method to IDP (2.1) and the follow-
ing results are obtained:
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(1) The present study successfully applies the numerical method to the inverse diffu-
sion problem (IDP).

(2) To solve the IDP by using the genetic algorithm, the unknown function will be
guessed and we don’t need the regularization. This will improve the execution
time.

(3) To solve the direct diffusion problem, we used the Sinc-Galerkin method. There-
fore, we obtain the solution of direct problem in a more extensive time range. In
fact, the solutions are obtained in the whole domain. Furthermore, this method
improves the execution time for solving direct diffusion problem.

(4) Results show that a good estimation can be obtained by combining the genetic
algorithm and the Sinc-Galerkin method within a CPU with clock speed 2.7 GHz.
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