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A NOTE ON LINE GRAPHS

S. BHAVANARI1, S. DEVANABOINA2, S. P. KUNCHAM3, §

Abstract. The line graph and 1-quasitotal graph are well-known concepts in graph
theory. In Satyanarayana, Srinivasulu, and Syam Prasad [13], it is proved that if a
graph G consists of exactly m connected components Gi (1 ≤ i ≤ m) then L(G) =
L(G1) = L(G2) ⊕ ... ⊕ L(Gm) where L(G) denotes the line graph of G, and ⊕ denotes
the ring sum operation on graphs. In [13], the authors also introduced the concept 1-
quasitotal graph and obtained that Q1(G) = G⊕L(G) where Q1(G) denotes 1-quasitotal
graph of a given graph G. In this note, we consider zero divisor graph of a finite associate
ring R and we will prove that the line graph of Kn−1 contains the complete graph on n
vertices where n is the number of elements in the ring R.

Keywords: line graph, quasi-total graph, zero-divisor graph, associate ring, complete
graph.
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1. Introduction

Let G = (V,E) be a graph consist of a finite non-empty set V of vertices and finite set
E of edges such that each edge is identified as an unordered pair of vertices vi, vj . An edge
associated with a vertex pair vi, vi is called a self-loop. The number of edges associated
with the vertex is the degree of the vertex, and δ(v) denotes the degree of the vertex v. If
there is more than one edge associated with a given pair of vertices, then these edges are
called parallel edges or multiple edges. A graph that does not have self-loop or parallel
edges is called a simple graph. We consider simple graphs only. For a commutative ring
R, the notion of zero divisor graph is given in Beck [1]. In this paper, we consider the
associative rings (need not be commutative) and we will provide some examples on the
zero divisor graphs of Zn where n is a positive integer.

A graph G = (V,E) is said to be a star graph, if there exists a fixed vertex v such
that E = {vu : u ∈ V, u 6= v}. A star graph is said to be an n-star graph, if the number
of vertices of the graph is n. A complete graph is a simple graph in which each pair of
distinct vertices is joined by an edge. The complete graph on n vertices is denoted by Kn.
In a graph G, a subset S of V (G) is said to be a dominating set, if every vertex not in S
has a neighbor in S. The domination number denoted by γ(G) is defined as min {|S| : S
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is a dominating set in G }. A subgraph of G = (V,E) is a graph G1 = (V1, E1) such
that V 1 ⊆ V,E1 ⊆ E and each edge of G1 has the same end vertices in G1 as in G. For
any graph G with vertex set V (G) and edge set E(G), the 1quasitotal graph, (denoted by
Q1(G)) of G consists of the vertex set of Q1(G), that is V (Q1(G)) = V (G) ∪ E(G) and
two vertices x, y in V (Q1(G)) are adjacent if they satisfy conditions: (i) x, y are in V (G)
and xy ∈ G and (ii) x, y are in E(G) and x, y are incident in G.

For other preliminary results and notations, we use Satyanarayana and Syam Prasad
[9].

2. Zero divisor graph of a ring

Let R denotes a finite associative ring.

Definition 2.1. A graph is said to be the zero divisor graph of R if and E = {xy : x, y ∈
R, x 6= 0 6= y, xy = 0} ∪ {x0 : 0 6= x ∈ R} where ab denotes an edge between a, b ∈ V .

This definition zero divisor graph is same as that of Beck [1] in case of commutative
rings.

Notation 2.1. (i) The zero divisor graph of ring R is denoted by ZDG(R),

(ii) In the graph ZDG(R), we have that V (ZDG(R)) = R and E(ZDG(R)) = {xy :
x, y ∈ R, x 6= 0 6= y, xy = 0} ∪ {x0 : 0 6= x ∈ R}.

Example 2.1. Consider Zn, the ring of integers modulo n. Let us construct the ZDG(R)
where R = Z10 = {0, 1, 2, ..., 9} . So V (ZDG(R)) = {0, 1, 2, ..., 9}. Since 5 · 8 = 5 · 4 =
5 · 6 = 0, there exist edges between the vertices 5 and 8, 5 and 4 also 5 and 6. Since 0
is adjacent to all the elements in R, we get 01, 02, 03, 04, 05, 06, 07, 08, 09 ∈ E(ZDG(R)).
Therefore E(ZDG(R)) = {01, 02, 03, 04, 05, 06, 07, 08, 09}. Now ZDG(R) is given in fig-
ure 1.3 (i). We observe that ZDG(Z10) contains 10-star graph as its subgraph. The
domination number is 1.

Now we construct line graph of ZDG(Z10).

V (ZDG(Z10)) = {e1 = 01, e2 = 02, e3 = 03, e4 = 04, e5 = 05, e6 = 06, e7 = 07, e8 =
08, e9 = 09, e10 = 25, e11 = 54, e12 = 56, e13 = 58}.

and
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E(ZDG(Z10)) = {e1e2, e1e3, e1e4, e1e5, e1e6, e1e7, e1e8, e2e3,
e2e4, e2e5, e2e6, e2e7, e2e8, e2e9, e3e4, e3e5,
e3e6, e3e7, e3e8, e3e9, e4e5, e4e6,
e4e7, e4e8, e4e9, e5e6, e5e7, e5e8,
e5e9, e6e7, e6e8, e6e9, e7e8, e7e9,
e8e9, e10e2, e10e5, e10e11, e10e12, e10e13,
e11e5, e11e13, e11e12, e11e4, e12e6, e12e13,
e12e5, e13e8, e13e5}.

The graph E(ZDG(Z10)) is given in figure 1.3 (ii).

In Satyanarayana, Srinivasulu, and Syam Prasad [13], it is proved that Q1 = G⊕L(G)
where Q1(G) denotes 1-quasitotal graph of a given graph G.

The 1-quasitotel graph of (ZDG(Z10)) is the ring sum of both the graphs given in the
figure 1.3 (i) and 1.3 (ii).

Example 2.2. Let us construct the (ZDG(R)), where R = Z8. We know that R = Z8 =
{0, 1, 2, ..., 7}, so V = (ZDG(R)) = {0, 1, 2, ..., 7}. Since 2 · 4 = 4 · 6 = 0, there exists an
edge between the vertices 2 and 4, 4 and 6. Also, since 0 is adjacent to all the elements
in R, we get
E(ZDG(R)) = {01, 02, 03, 04, 05, 06, 07, 24, 46}.
Now (ZDG(R)) is given in figure 1.4(i). We observe that (ZDG(Z8)) contains 8-star

graph as its subgraph. The domination number is 1.

Now we construct line graph of (ZDG(Z8)).
V (ZDG(Z8)) = {e1 = 01, e2 = 02, e3 = 03, e4 = 04, e5 = 05, e6 = 06, e7 = 07, e8 =

24, e9 = 46} and
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E(ZDG(Z10)) = {e1e2, e1e3, e1e4, e1e5, e1e6, e1e7, e2e3,
e2e4, e2e5, e2e6, e2e7, e3e4, e3e5, e3e6, e3e7, e4e5, e4e6,
e4e7, e4e8, e4e9, e5e6, e5e7, e2e8, e8e9, e4e8, e4e9, e6e9}.

The graph L(ZDG(Z8)) is given by figure 1.4(ii).

The 1-quasitotal graph of (ZDG(Z8)) is the ring sum of both the graphs given in figures
1.4(i) and 1.4(ii).

Note 2.1. (i) (ZDG(Zp)) is a p−star graph for any prime number p. (ii) The domination
number of (ZDG(Zn)) is equal to 1 for any positive integer n.

3. Line graphs

In this section, we construct line graphs for two zero divisor graphs and observe some
properties. Finally, we prove that L(ZDG(R)) contains the complete graph K(n−1) as a
subgraph where n denotes the number of elements in the ring R.

Example 3.1. Take R = Z4, the ring of integers modulo 4. We know that R = Z4 =
{0, 1, 2, 3}, so V (ZDG(R)) = {0, 1, 2, 3}. Since 0 is adjacent to all the elements in R, we
get 01, 02, 03 ∈ E(ZDG(R)). Now ZDG(R)) is given in figure 2.1.

Now we construct line graph of ZDG(Z4). Now V (ZDG(Z4)) = {e1 = 01, e2 = 02, e3 =
03} and E(ZDG(Z4)) = {e1e2, e2e3, e3e1}. The graph L(ZDG(Z4)) is given by figure 2.1
(ii).
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We can observe that L(ZDG(Z4)) is a triangle (since ZDG(Z4)) is a 3-stargraph). The
domination number of both of these graphs is equal to 1. L(ZDG(Z4)) is eqaul to K3, the
complete graph on three vertices.

Example 3.2. (i) Let us construct ZDG(Z6), so V (ZDG(Z6)) = {1, 2, 3, 4, 5}. Since
2 · 3 = 3 · 4 = 0, there exist an edge between the vertices 2 adn 3, 3 and 4. Also since
0 is adjacent to all the elements in R, we get e1e2, e2e3, e3e1 ∈ E(ZDG(Z6)). The graph
ZDG(Z6) is given in figure 2.2(i).

Now we construct line graph of ZDG(Z6). Now V (ZDG(Z6)) = {e1 = 01, e2 = 02, e3 =
03, e4 = 04, e5 = 05, e6 = 23, e7 = 34}. The graph L(ZDG(Z6)) is given by figure 2.2 (ii).

We can observe that subgraph of L(ZDG(Z6)) is generated by the vertices e1, e2, e3, e4, e5
forms a complete graph K5 on five vertices which is a subgraph of L(ZDG(Z6)).

The proof of the following Lemma 2.3 is parallel to the first part of Lemma 1.3 of [13].
For completeness we present the proof here.
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Lemma 3.1. Let G be a graph and H be a subgraph of G. Then L(H) ⊆ L(G).

Proof: Since H is a subgraph of G, we have that V (H) ⊆ V (G) and E(H) ⊆ E(G).
Now V (L(H)) = E(H) ⊆ E(G) = V (L(G)). Let e1e2 ∈ E(L(H)). This implies

e1, e2 ∈ E(H) such that e1 and e2 are adjacent. Since H is a subgraph of G, we have that
e1, e2 ∈ E(H) ⊆ E(G) and e1, e2 are adjacent in G. Therefore e1e2 ∈ E(L(G)). Now we
verified that V (L(H)) ⊆ V (L(G)) and E(L(H)) ⊆ E(L(G)). This shows that L(H) is a
subgraph of L(G).

Lemma 3.2. If G = (V,E) is a stargraph of degree n, then L(G) = K(n−1), the complete
graph on (n− 1) vertices.

Proof: Let G = (V,E) be a star graph with center 0 and V = {0, x1, x2, ..., x(n−1)}. It

is clear that E = {0xi : 1 ≤ i ≤ (n− 1)}. Write ei = 0xi for 1 ≤ i ≤ (n− 1).
Consider the line graph L(G). Now V (L(G)) = {e1, e2, ..., e(n−1)}, for each ei, ej , i 6= j,

we have that ei = xi0, ej = 0xj are adjacent and so eiej ∈ E(L(G)). Hence L(G) is a
complete graph on vertices (n− 1) vertices e1, e2, ..., e(n−1). Hence L(G) = K(n−1).

Theorem 3.1. If R is a finite associative ring with |R| = n, then L(ZDG(R)) contains
the complete graph K(n−1) as a subgraph.

Proof: Let R = {0, x1, x2, ..., x(n−1)}. By definition of L(ZDG(R)) we have that 0xi ∈
E(ZDG(R)) for 1 ≤ i ≤ (n − 1). Now V = {0, x1, x2, ..., x(n−1)} together with the edge

set {0xi : 1 ≤ i ≤ (n − 1) forms a star graph S which is also a subgraph of ZDG(R).
By Lemma 3.1, L(S) is a subgrah of L(ZDG(R)). Since S is a stargraph with V (S) = n
, by Lemma 3.2, we have that L(S) = K(n−1). Thus L(S) = K(n−1) is subgraph of
L(ZDG(R)).
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