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ON TRANS-SASAKIAN MANIFOLD EQUIPPED WITH
m-PROJECTIVE CURVATURE TENSOR

J. P. JAISWAL ', A. S. YADAV?, §

ABSTRACT. The work towards of the attending paper is to interpret the trans-Sasakian
manifold equipped with m-projective curvature tensor and its various geometric proper-
ties. First, we observe that m-projectively flat trans-Sasakian manifold is Einstein. In
order, we discussed m-projectively conservative and ¢-m-projectively flat trans-Sasakian
manifold. Following, we found the sufficient condition for quasi m-projectively flat trans-
Sasakian manifold to be m-projectively flat. In the end, the m-projectively and ¢-m-
projectively symmetric trans-Sasakian manifolds are analyzed.
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1. INTRODUCTION

Oubina [8] initiated a new class of almost contract manifold, called trans-Sasakian
manifold, which is of type (0, 0), (o, 0) and (0, 3) are respectively, familiar as the cosym-
plectic, a-Sasakian and S-Kenmotsu manifold, «, 8 are the scalar smooth functions. In
fact if a =0, 6 =1and a« =1, 8 = 0, then a trans-Sasakian manifold will enhance a
Kenmotsu and Sasakian manifold, respectively.

In 1971, Pokhariyal and Mishra[9] established a new curvature known as m-projectively
curvature tensor on Riemannian manifold. Followed that many researcher such as Ojha
[6, 7], Singh [12], Choubey and Ojha [3] studied properties of m-projective curvature in
different manifolds. We say that a Riemannian manifold is flat if its curvature vanishes
at each point. Following this sense Ojha [7] and Zengin [15] consider the m-projective
flat in the Sasakian and LP-Sasakian manifold, respectively. The idea of local symmetry
of a Riemannian manifold studied by Cartan [2] and mild version of local symmetry,
Takahashi [13] introduced the notion of ¢-symmetry on a Sasakian manifold. In this series,
we investigate some results about flatness, symmetry and space time with m-projective
curvature in trans-Sasakian structure.

The paper classified as follows: In part 2, we put some basic formulae and definition
of trans-Sasakian manifold. In the next part, we confer about m-projectively flat trans-
Sasakian manifold and mentioned a sufficient condition for such a manifold to be Einstein.

! Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal, M. P. India.
e-mail: asstprofjpmanit@gmail.com, ORCID': http://orcid.org/0000-0003-4308-2280;

2 Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal, M. P. India.
e-mail: arjunsinghyadav7@gmail.com, ORCID?: http://orcid.org/0000-0003-3594-7846;

§ Manuscript received: July 03, 2016; accepted: May 22, 2017.
TWMS Journal of Applied and Engineering Mathematics Vol.7, No.2; (©) Isik University, Department
of Mathematics, 2017; all rights reserved.

282



J. P.JAISWAL, A. S. YADAV: ON TRANS-SASAKIAN MANIFOLD EQUIPPED WITH M-PROJECTIVE..283

Then, we found the condition such that the m-projective conservative trans-Sasakian man-
ifold is of constant curvature. Successive that, we find the condition for ¢-m-projectively
flat trans-Sasakian manifold to be n-Einstein and quasi m-projectively flat is of constant
curvature. In the last, we examine the m-projective and ¢-m-projective symmetric trans-
Sasakian manifolds.

2. PRELIMINARIES

In this section, we mention some basic formulae and definitions, which will be used
later.

Let M™ be an m = (2n+ 1) dimensional almost contact metric manifold [1], consisting
of a (1, 1) tensor field ¢, a characteristic vector field &, a 1-form n and a Riemannian metric
g. Then

¢*X = =X +n(X)E, (&) =1, n(¢X) =0, ¢ =0, (1)
9(57§>:1;¢°§:07770¢:07 (3)
for any X, Y in TM. From (1) and (2), it can be easily seen that
For an almost contact metric structure (¢,&,n,g) on M, we put
O(X,Y) = g(X, ¢Y). (5)

Let M2t be almost contact manifold and consider the structure (M xR, J, G)
belongs to the class W, of the Hermitian manifolds, we denote a vector field on M x R
by (X, f%), where X is tangent to M, is the co-ordinates of R and f as C'*° function on
M x R. Define an almost complex structure [4]

7 (x.55) = (ex - s ).

for any vector field X on M x R and G is Hermitian metric on the product M x R.This
may be expressed by the condition

where V is a Levi-civita connection and ¢, § are some smooth functions on M?**+1 and
we say that trans-Sasakian structure is type («, ). From the above, it is follows that

(VXU)Y = _ag(¢X7 Y) + ﬁg(ng) ¢Y)7 (7)
(Vx§) = —apX + B(X — n(X)§). (8)

On a trans-Sasakian manifold M?"*! with structure (¢, &, 1, g), the following relations
hold [11]

R(X,Y,§) = (o =B)n(Y)X —n(X)Y] + 2a8[n(Y)¢X —1(X)Y]

+(Ya)pX — (Xa)pY + (YB)¢*X — (XB)¢?Y, (9)
R(¢,X,€) = (o — B — £B)[n(X)€ — X], (10)
208+ &a =0, (11)

R Y, Z) = (&= B 9(Z, V)¢ —n(Z2)Y] + 20B[g(¢Z,Y)é +1(Z)¢Y ] + (Za)pY
+9(¢Z,Y)grada + (ZB)[Y — n(Y)¢] — g(¢Z, ¢Y )gradp, (13)
S(X,8) = [2n(a® = B%) = €BIn(X) — (2n — 1)XB — (X))o, (14)
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S(€,€) =2n(a” - B> - £B), (15)

S(¢X,9Y) = S(X,Y) —2n(a® — B2 — £B)n(X)n(Y), (16)
Q¢ = (2n(a® — %) — £B)E — (2n — 1)gradf + ¢(grada), (17)
S(X,Y) = g(QX,Y), (18)

where R is the curvature tensor, .S is the Ricci tensor, r is scalar curvature and () being the
symmetric endomorphism of the tangent space at each point corresponding to Ricci-tensor
S. Now, we assume that

d(grada) = (2n — 1)gradp, (19)
then [11]
S(X,€) = 2n(a” — B%)n(X), (20)
S(¢X,9Y) = S(X,Y) — 2n(a® — B2)n(X)n(Y), (21)
Q¢ =2n(o® — B, (22)
(VwS)(¥.€) = 2n(a? — B2)[-ag(Y.6W) + Ba(Y. W)]
+aS(Y, W) — BS(Y, V). (23)

Now we are going to mention the following definition, which will be considered in the later
results:

Definition 2.1. [4] A trans-Sasakian manifold M>*"*1 is said to be n-Einstein, if the Ricci
tensor S satisfies the relation

S(X,Y) =ag(X,Y) + bn(X)n(Y), (24)
for all X and Z € TM, where a and b are smooth functions on M>"t1.

In particular, if b = 0 then it reduce to the Einstein manifold.

3. mM-PROJECTIVELY FLAT TRANS-SASAKIAN MANIFOLD

Definition 3.1. [10] A trans-Sasakian manifold M*"*! is said to be m-projectively flat,
if the m-projective curvature tensor M satisfies the relation

M(X,Y,Z) =0, for all X,Yand Z, (25)

where m-projective curvature tensor M is given by [9]

M(X,Y,Z) = R(X,Y,Z)- i [S(Y, )X - S(X,2)Y

+V.2)QX ~ g(x. 2)QY | (26)
Theorem 3.1. An m-projectively flat trans-Sasakian manifold M** 1 is an Einstein man-
ifold.

Proof. Let M?"*! be m-projectively flat trans-Sasakian manifold, then the equation (26)
becomes

RX,Y.Z) — % S(Y, 2)X — S(X, Z)Y

+9(Y, 2)QX — g(X, Z)QY |. (27)
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Proceeds the inner product in above equation both side with respect to U, then we obtain

GR(XY,2),0) = |8V, 2)g(X,U) = S(X, 2)g(¥, )
+9(Y,2)S(X,U) — g(X,Z2)S(Y,U)|. (28)

Taking the contraction over X and U, we get

S(Y,Z) = — j9(Y.2). (29)

(2n+1

Theorem 3.2. An m-projectively flat trans-Sasakian manifold M?"+1 is of constant cur-
vature.

Proof. Let M?"*1 be m-projectively flat trans-Sasakian manifold. Then by existence of
the relation (27) and after using the equations (29), we can find

r

R(X.Y,2) = 2n(2n + 1)

l9(Y, 2)X —g(X, Z)Y]. (30)
O

By virtue of the Theorem (3.1) and Theorem (3.2), we state the following corollary:
Corollary 3.1. An m-projectively flat trans-Sasakian manifold M?*" 1, is of constant
curvature iff it is Finstein.

4. m-PROJECTIVE CONSERVATIVE TRANS- SASAKIAN MANIFOLD

Definition 4.1. [5] A trans-Sasakian manifold M*"*1 is said to be m-projective conser-
vative, if the m-projective curvature tensor M satisfies the relation

div(M(X,Y,Z)) =0, for all X,Yand Z, (31)
where div denotes the divergence.

Theorem 4.1. An Einstein trans-Sasakian manifold M>* 1 with constant scalar curva-
ture is m-projective conservative iff it is conservative.

Proof. We assume that M?"+! be Einstein M-projective trans-Sasakian manifold then by
virtue of relation (26), we obtain

M(X,Y,Z):R(X,Y,Z)—%[g(Y,Z)X—g(X,Z)Y]. (32)
By taking covariant derivative both side with respect to W in above equation, we obtain
(Vw)M(X,Y, Z) = (Vw)R(X,Y, Z). (33)
Contracting the above relation with W, we can find
div(M(X,Y, 7)) = div(R(X,Y, Z)). (34)
If manifold is m-projective conservative, then
div(R(X,Y,Z)) = 0. (35)

Then the converse part is trivial. O
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5. ¢-m-PROJECTIVELY FLAT TRANS- SASAKIAN MANIFOLD

Definition 5.1. [11] A trans-Sasakian manifold M*"*1 is said to be ¢-m-projectively flat,
if the m-projective curvature tensor M satisfies the relation

2(M (X, 0Y,62)) =0, for all X,Yand Z. (36)

Theorem 5.1. A ¢-m-projectively flat trans-Sasakian manifold M+ is an n-Einstein
manifold.

Proof. Let us we assume that M?"*! be ¢-M-projectively flat trans-Sasakian manifold.
Then by virtue of the relations (36) and (1), we have

M(¢pX,¢Y, ¢Z) = n(M(¢X, Y, pZ))¢, (37)
which implies
g(M(¢X,9Y,¢2),pU) = n(M(¢X, Y, $Z))g(&, oU). (38)
By the relation (1), the above equation becomes
9(M(¢pX, Y, $Z),¢U) = 0. (39)

Now, by virtue of the relation (26), we obtain

1
9(R(¢X, Y, 92),9U) = %[S(GW, 0Z)g(¢X,oU) — S(¢X, 9Z)g(¢Y, ¢U)
+9(8Y, 92)S (X, ¢U) — g(¢X, $Z)S(¢Y,¢U)].  (40)
Let {e1,e9,........ ,ean, &} be a local orthonormal basis of vector field in M2"*! by using

the fact that {¢eq, pea, ........ , ean, £} is also a orthonormal basis, if we put X=U=e; in
above relation and taking summation with respect to ¢, then we have

2n
> g(R(ges, Y, 07), gey)
= 1 2n 2n
= [Z S(8Y, 62)g(0ei, dei) = ) S(dei, 6Z)g(8Y, ge:)
i=1 =1
2n 2n
£ 96V, 02)S(enbes) — S alder, 62)S(6Y. qsei)} . (41)
=1 =1

Now, we find that

2n
> 9(R(ges, Y, 67), pei) = S(0Y,6Z) — (o = B* = £B)g(8Y, ¢2),
=1

2n
Z g(pei, pei) = 2n, (42)
i=1

2n

> S(ei, $2)g(oY, de;) = S(¢Y, 6 Z), (43)

i=1

2n
> S(¢ei, dei) = r —2n(a® — 57 = £B), (44)

i=1
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(2n+2)S(6Y,62) = [r + 2n(a” — B* = £B)lg(4Y, 6 2). (45)
Using the relations (42)-(45), the equation (41) becomes

S(Y,Z) (271_’_2)[7”‘1'2”(042—52—53)]9(5/72)
g |G- Ve - P - )|a @), (o
Hence the manifold is n-Einstein. O

6. QUASI m-PROJECTIVELY FLAT TRANS-SASAKIAN MANIFOLD

Definition 6.1. [10] A trans-Sasakian manifold M?"*1 is said to be quasi m-projectively
flat, if the m-projective curvature tensor M satisfies the relation

g(M(X,Y,Z),oU) =0, for all X,Y Z and U. (47)

Theorem 6.1. A quasi m-projectively flat trans-Sasakian manifold M?*" 1 satisfying
¢(grada) = (2n — 1)gradf is m-projectively flat if it is of constant curvature .

Proof. Let M?"*! be a quasi m-projectively flat trans-Sasakian manifold. Then by the
relations (47) and (26), we obtain

9(R(X, Y, 2),60) = -[S(Y, Z)a(X,6U) ~ S(X, Z2)g(V, 6U)
L. 2)8(X,60) — (X, 2)S(Y, 607, (48)
Putting X = ¢X in the above relation, we get
YRGX,Y, 2),60) = IS(Y, 2)g(6X, U) ~ S(6X, Z2)g(¥, 6U)
+9(Y, Z)S(6X, 6U) — g(6X, Z)S(Y, U)]. (49)

After putting X=U=e; in above relation and taking summation with respect to i, we
attain

Zg (¢ei,Y, Z), de)

— ﬁ [Z S(Y, Z)g(pes, pe;) Z S(pei, Z)g(Y, pe;)

- Zg (Y, 2)S(pei, de;) Zg dei, Z)S(Y, (ﬁez)} . (50)
If M2+ satisfies d)(gradoz) = (2n — 1)gradp, we have the following relation
Zg (¢ei,Y, Z), de;) = S(Y, Z) — (o® — 5%)9(¢Y, ¢2), (51)
Z S(gei 2)9(Y, pei) = S(Y, Z) — 2n(a® — B)n(Y)n(2), (52)
2n
> S(¢ei, gei) =1 — 2n(a® - B7). (53)

i=1
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After using the relations (42), (51), (52) and (53) in the equation (50), we obtain
r 4+ 2n(a? — 3?)
(2n+2)

By virtue of the equation (26) and using the above relation, we can get

M(X,Y,Z) = R(X,Y,Z2)
B [r + 2n(a? — 3?)
(n+1)
Which shows the statement. O

S(Y, Z) = [ ] 9(Y. 2). (54)

] 9V, 2)X — g(X, 2)Y]. (55)

7. m-PROJECTIVELY SYMMETRIC TRANS-SASAKIAN MANIFOLD

Definition 7.1. [4] A trans-Sasakian manifold M*" ! is said to be m-projectively sym-
metric, if the m-projective curvature tensor M satisfies the relation

(VwM)(X,Y,Z) =0, for all X,Y Z and W. (56)

Theorem 7.1. A m-projectively symmetric trans-Sasakian M?*" T manifold is Ricci-
recurrent.

Proof. Let M?"*1 is a m-projectively symmetric trans-Sasakian manifold. Then by the
equations (56) and (26), we find

A(VWR)(X, Y, 2),0) = - [(VwS)(Y, Z)g(X,U) ~ (VwS(X, Z)g(Y.U)
HVWS)(X,0)g(¥, 2) ~ (YwS)(¥, U)g(X, 2)]. (57

Taking contraction over X and U, we secure

(VwS)(¥,2) = 1[0+ D(TwS)(Y,2) - (VwS(Y,2)
+dr(W)g(Y, Z2) — (VwS)(Y, Z)], (58)
which implies
dr(W)
(VwS)(Y, Z) mg(ya Z). (59)
Hence the manifold is Ricci-recurrent. ]

Suppose the scalar curvature r is constant then we mention the corollary:

Corollary 7.1. An m-projective symmetric trans-Sasakian manifold M?"+t1 with constant
scalar curvature is Einstein.

8. ¢-m-PROJECTIVELY SYMMETRIC TRANS-SASAKIAN MANIFOLD

Definition 8.1. [4] A trans-Sasakian manifold M?*"*1 is said to be ¢ — m-projectively
symmetric, if the m-projective curvature tensor M satisfies the relation

P2(VwM)(X,Y,Z) =0, for all X,Y Z and W. (60)

Theorem 8.1. A ¢ — m-projectively symmetric trans-Sasakian M>*"T' manifold is an
Einstein.



J. P.JAISWAL, A. S. YADAV: ON TRANS-SASAKIAN MANIFOLD EQUIPPED WITH M-PROJECTIVE..289

Proof. Let us consider M?"*! is a ¢ — m-projectively symmetric trans-Sasakian manifold.
Then by the equations (60) and (1), we get

g((vWM)(X7 Y, Z)v U) = 77((VWM>(Xa Y, Z))g(éa U) (61)

The existence of the relation (26), the above equation becomes

H(TWRIX.Y.2).0) 1| (TwS)(V.2)9(X,U) = (TwS)(X. Z)g(1.)

n

(Y S) (X, U)g(Y. Z) — (Vi S)(¥.U)a(X, Z)}

=g9(VwR)(X,Y,2),£)9(&,U) — ﬁ [(VWS)(K 2)9(X,§) — (VwS)(X, Z)g(Y.€)
HIWS)(X.g(Y.2) - (VwS)(Y: 9(X.2)|9(6,0). (62)
After contraction over X and Z, we secure
dr(W)
(VwS) (Y, U) = (VwS) (Y. EnU) = m[—g(x U) +g9(Y,OnU)]. (63)
Putting Y = &, we get
(VwS) (&, U) = 0. (64)
By virtue of the relation (23) and above equation, we have
2n(a? — 82)[~ag(U, W) + Bg(U, W) + aS(U, oW) — BS(U, W) = 0. (65)

We put U=¢U andW =¢W, respectively in the above relation and then using equations
(1), (4),(18),(19) and (22), we find that

S(U, W) = 2n(a® — 8%)g(U, W)
and
S(¢U, W) = 2n(c® — B%)g(oU, W). (66)
O
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