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FRACTIONAL PLUS FRACTIONAL CAPACITATED

TRANSPORTATION PROBLEM WITH ENHANCED FLOW

KAVITA GUPTA1, §

Abstract. This paper presents an algorithm to solve a fractional plus fractional capac-
itated transportation problem with enhanced flow (EP ). A related transportation prob-
lem (RTP ) is formed and it is shown that to each corner feasible solution to (RTP ),there
is a corresponding feasible solution to enhanced flow problem (EP ). An optimal solution
to (EP ) is shown to be determined from an optimal solution to (RTP ). A numerical
example is given in support of the theory and is verified by using a computing software
Excel Solver.

Keywords: capacitated, transportation problem, optimal solution, feasible solution, en-
hanced flow, related transportation problem.
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1. Introduction

The standard transportation problem is concerned with transporting at a minimum
cost, a homogeneous commodity from each of the factories (or origins) to a number of
markets (or destinations). Quite frequently, it may so happen that there is an extra de-
mand in the markets for the commodity. In order to meet this extra demand, the factories
have to increase their production. The total flow from the factories to the markets is now
enhanced by the amount of extra demand. The standard transportation problem has now
no longer transportation structure because of this flow structure. Enhanced flow problems
have been studied by many researchers in the past years. Khurana and Arora [9] have
studied enhanced flow and restricted flow in a sum of linear and linear fractional trans-
portation problem. Khanna [8] discussed impact of extra flow in a linear transportation
problem in 1982. In 2011, Khurana and Arora [10] presented an algorithm to solve a
fixed charge bi-criterion indefinite quadratic transportation problem with enhanced flow.
Gupta and Arora [6] studied enhanced flow constraint in a capacitated fixed charge indef-
inite quadratic transportation problem.

Another important class of transportation problems consist of capacitated transporta-
tion problems where the decision variables are bounded. Many researchers like Dahiya
and Verma [1] , Das et.al. [3], Gupta and Arora [4, 5] have contributed a lot in this field.
Dan et.al. [2] discussed paradox in sum of a linear and linear fractional transportation
problem. Joshi and Gupta [7] have studied linear fractional transportation problem with
varying demand and supply. Xie et. al. [11] studied both duration and cost optimization
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for transportation problem. This extensive literature on capacitated transportation prob-
lem and flow constraint motivated us to solve capacitated transportation problem with
enhanced flow when the objective function is the sum of two linear fractional functions.

This paper is organized as : In section 2, fractional plus fractional capacitated trans-
portation problem with enhanced flow is formulated. To solve this enhanced problem, a
related transportation problem is also formed. In section 3, optimality criterion for the
solution of fractional plus fractional capacitated transportation problem is developed . In
section 4, it is shown that the enhanced problem and related problem are equivalent. In
section 5, an algorithm is presented to solve a fractional plus fractional capacitated trans-
portation problem with enhanced flow . In section 6, a numerical illustration is included
in support of theory.

2. Problem Formulation

Let I = {1, 2, .....,m} be the index set of m origins.
J = {1, 2, ......., n} is the index set of n destinations.
xij = the number of units transported from ith origin to jth destination .

cij = the actual cost of transporting one unit of a commodity from ith origin to the jth

destination.
dij = the standard cost of transporting one unit of a commodity from ith origin to the jth

destination.
eij = the actual cost of purchasing one unit of a commodity from ith origin by the jth

destination.
fij = the standard cost of purchasing one unit of a commodity from ith origin by the jth

destination.
lij and uij are the bounds on number of units to be transported from ith origin to jth

destination.
ai = the number of units available at the origin i
bj = the number of units demanded by the destination j
P = Total flow
Consider a fractional plus fractional capacitated transportation problem with enhanced
flow constraint given by :

(EP ) : min{

∑
i∈I

∑
j∈J

cijxij∑
i∈I

∑
j∈J

dijxij
+

∑
i∈I

∑
j∈J

eijxij∑
i∈I

∑
j∈J

fijxij
}

subject to∑
j∈J

xij ≥ ai,∀i ∈ I

∑
i∈I

xij ≥ bj ,∀j ∈ J

∑
i∈I

∑
j∈J

xij = P where P > max(
∑
i∈I

ai,
∑
j∈J

bj)

lij ≤ xij ≤ uij and integers, ∀i ∈ I, ∀j ∈ J
In order to solve the problem (EP ), we consider the following related problem (RTP )

with an additional origin and an additional destination. Let I
′

= {1, 2, .......,m,m + 1}
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and J
′

= {1, 2, ......., n, n+ 1}.

(RTP ) : min{

∑
i∈I′

∑
j∈J ′

c
′
ijyij∑

i∈I′

∑
j∈J ′

d
′
ijyij

+

∑
i∈I′

∑
j∈J ′

e
′
ijyij∑

i∈I′

∑
j∈J ′

f
′
ijyij
}

subject to∑
j∈J ′

yij = a
′
i,∀i ∈ I

′

∑
i∈I′

yij = b
′
j ,∀j ∈ J

′

lij ≤ yij ≤ uij and integers,∀i ∈ I, ∀j ∈ J

0 ≤ ym+1,j ≤
∑
i∈I

uij − bj , ∀j ∈ J

0 ≤ yi,n+1 ≤
∑
j∈J

uij − ai,∀i ∈ I

ym+1,n+1 ≥ 0 and integers

a
′
i =

∑
j∈J

uij , ∀i ∈ I, a
′
m+1 =

∑
i∈I

∑
j∈J

uij − P = b
′
n+1; b

′
j =

∑
i∈I

uij , ∀j ∈ J

c
′
ij = cij , c

′
m+1,j = c

′
i,n+1 = 0;∀i ∈ I, ∀j ∈ J, c′m+1,n+1 = M

d
′
ij = dij , d

′
m+1,j = d

′
i,n+1 = 0;∀i ∈ I, ∀j ∈ J, d′

m+1,n+1 = M

e
′
ij = eij , e

′
m+1,j = e

′
i,n+1 = 0;∀i ∈ I, ∀j ∈ J, e′m+1,n+1 = M

f
′
ij = fij , f

′
m+1,j = f

′
i,n+1 = 0;∀i ∈ I, ∀j ∈ J, f ′

m+1,n+1 = M

where M is a large positive number.

3. Optimality criteria for a fractional plus fractional capacitated
transportation problem

Theorem 3.1. Let X0 = {x0ij}I′×J ′ be the feasible solution of problem (RTP ). Let

C0 =
∑
i∈I′

∑
j∈J ′

c
′
ijx

0
ij ; D

0 =
∑
i∈I′

∑
j∈J ′

d
′
ijx

0
ij ; E

0 =
∑
i∈I′

∑
j∈J ′

e
′
ijx

0
ij ; F

0 =
∑
i∈I′

∑
j∈J ′

f
′
ijx

0
ij.

Let B be the set of cells (i, j) which are basic and N1 and N2 denotes the set of non-
basic cells (i, j) which are at their lower bounds and upper bounds respectively. Let

u1i , u
2
i , u

3
i , u

4
i , v

1
j , v

2
j , v

3
j , v

4
j ; i ∈ I ′

, j ∈ J ′
be the dual variables such that u1i +v

1
j = c

′
ij , ∀(i, j) ∈

B;u2i + v2j = d
′
ij ,∀(i, j) ∈ B;u3i + v3j = e

′
ij ,∀(i, j) ∈ B;u4i + v4j = f

′
ij ,∀(i, j) ∈ B;u1i + v1j =

z1ij , ∀(i, j) /∈ B;u2i + v2j = z2ij , ∀(i, j) /∈ B;u3i + v3j = z3ij ,∀(i, j) /∈ B;u4i + v4j = z4ij ,∀(i, j) /∈
B.Then a feasible solution X0 = {x0ij}I′×J ′ of problem (RTP ) with objective function

value C0

D0 + E0

F 0 will be an optimal solution if and only if the following conditions holds.

δ1ij =
θij [D

0(c
′
ij − z1ij)− C0(d

′
ij − z2ij)]

D0[D0 + θij(d
′
ij − z2ij)]

+
θij [F

0(e
′
ij − z3ij)− E0(f

′
ij − z4ij)]

F 0[F 0 + θij(f
′
ij − z4ij)]

≥ 0;∀(i, j) ∈ N1 (1)

δ2ij =
−θij [D0(c

′
ij − z1ij)− C0(d

′
ij − z2ij)]

D0[D0 − θij(d
′
ij − z2ij)]

−
θij [F

0(e
′
ij − z3ij)− E0(f

′
ij − z4ij)]

F 0[F 0 − θij(f
′
ij − z4ij)]

≥ 0;∀(i, j) ∈ N2 (2)
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Proof. Let X0 = {x0ij}I′×J ′ be a feasible solution of problem (EP ) with equality con-

straints. Let z0 be the corresponding value of objective function. Then

z0 = [

∑
i∈I′

∑
j∈J ′

c
′
ijx

0
ij∑

i∈I′

∑
j∈J ′

d
′
ijx

0
ij

+

∑
i∈I′

∑
j∈J ′

e
′
ijx

0
ij∑

i∈I′

∑
j∈J ′

f
′
ijx

0
ij

] =
C0

D0
+
E0

F 0

=

∑
i∈I′

∑
j∈J ′

(c
′
ij − u1i − v1j )x0ij +

∑
i∈I′

∑
j∈J ′

(u1i + v1j )x0ij∑
i∈I′

∑
j∈J ′

(d
′
ij − u2i − v2j )x0ij +

∑
i∈I′

∑
j∈J ′

(u2i + v2j )x0ij

+

∑
i∈I′

∑
j∈J ′

(e
′
ij − u3i − v3j )x0ij +

∑
i∈I′

∑
j∈J ′

(u3i + v3j )x0ij∑
i∈I′

∑
j∈J ′

(f
′
ij − u4i − v4j )x0ij +

∑
i∈I′

∑
j∈J ′

(u4i + v4j )x0ij

=

∑ ∑
(i,j)∈N1

(c
′
ij − z1ij)lij +

∑ ∑
(i,j)∈N2

(c
′
ij − z1ij)uij +

∑
i∈I′

∑
j∈J ′

(u1i + v1j )x0ij∑ ∑
(i,j)∈N1

(d
′
ij − z2ij)lij +

∑ ∑
(i,j)∈N2

(d
′
ij − z2ij)uij +

∑
i∈I′

∑
j∈J ′

(u2i + v2j )x0ij

+

∑ ∑
(i,j)∈N1

(e
′
ij − z3ij)lij +

∑ ∑
(i,j)∈N2

(e
′
ij − z3ij)uij +

∑
i∈I′

∑
j∈J ′

(u3i + v3j )x0ij∑ ∑
(i,j)∈N1

(f
′
ij − z4ij)lij +

∑ ∑
(i,j)∈N2

(f
′
ij − z4ij)uij +

∑
i∈I′

∑
j∈J ′

(u4i + v4j )x0ij

=

∑ ∑
(i,j)∈N1

(c
′
ij − z1ij)lij +

∑ ∑
(i,j)∈N2

(c
′
ij − z1ij)uij +

∑
i∈I′

aiu
1
i +

∑
j∈J ′

bjv
1
j∑ ∑

(i,j)∈N1

(d
′
ij − z2ij)lij +

∑ ∑
(i,j)∈N2

(d
′
ij − z2ij)uij +

∑
i∈I′

aiu2i +
∑
j∈J ′

bjv2j

+

∑ ∑
(i,j)∈N1

(e
′
ij − z3ij)lij +

∑ ∑
(i,j)∈N2

(e
′
ij − z3ij)uij +

∑
i∈I′

aiu
3
i +

∑
j∈J ′

bjv
3
j∑ ∑

(i,j)∈N1

(f
′
ij − z4ij)lij +

∑ ∑
(i,j)∈N2

(f
′
ij − z4ij)uij +

∑
i∈I′

aiu4i +
∑
j∈J ′

bjv4j

Let some non-basic variable xij ∈ N1 undergoes change by an amount θrs where θrs is
given by min{urs−lrs;x0ij−lij for all basic cells (i, j) with a (−θ) entry in θ− loop;uij−x0ij
for all basic cells (i, j) with a (+θ) entry in θ− loop }. Then new value of the objective
function ẑ will be given by

ẑ =
C0 + θrs(c

′
rs − z1rs)

D0 + θrs(d
′
rs − z2rs)

+
E0 + θrs(e

′
rs − z3rs)

F 0 + θrs(f
′
rs − z4rs)

ẑ − z0 =
C0 + θrs(c

′
rs − z1rs)

D0 + θrs(d
′
rs − z2rs)

− C0

D0
+
E0 + θrs(e

′
rs − z3rs)

F 0 + θrs(f
′
rs − z4rs)

− E0

F 0
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=
θrs[D

0(c
′
rs − z1rs)− C0(d

′
rs − z2rs)]

D0[D0 + θrs(d
′
rs − z2rs)]

+
θrs[F

0(e
′
rs − z3rs)− E0(f

′
rs − z4rs)]

F 0[F 0 + θij(f
′
rs − z4rs)]

= δ1rs(say)

Similarly, when some non- basic variable xpq ∈ N2 undergoes change by an amount θpq then

ẑ − z0 =
−θpq[D0(c

′
pq − z1pq)− C0(d

′
pq − z2pq)]

D0[D0 − θpq(d′
pq − z2pq)]

−
θpq[F

0(e
′
pq − z3pq)− E0(f

′
pq − z4pq)]

F 0[F 0 − θpq(f ′
pq − z4pq)]

= δ2pq(say)

Hence X0 will be local optimal solution if δ1ij ≥ 0;∀(i, j) ∈ N1 and δ2ij ≥ 0;∀(i, j) ∈ N2.

Conversely, if δ1ij ≥ 0;∀(i, j) ∈ N1 and δ2ij ≥ 0;∀(i, j) ∈ N2, then ẑ − z0 ≥ 0 which simply

means ẑ ≥ z0. This shows that the minimum value of the objective function is z0. This
proves the theorem. �

4. Theoretical Development

Definition 4.1. Corner feasible solution:A basic feasible solution {yij}I′×J ′ to prob-
lem (RTP ) is called a corner feasible solution (cfs) if ym+1,n+1 = 0.

Theorem 4.1. A non- corner feasible solution of (RTP ) cannot provide a basic feasible
solution to (EP ).

Proof. Let {yij}I′×J ′ be a non -corner feasible solution to (RTP ).Then ym+1,n+1 = λ(> 0).

Therefore,
∑
i∈I′

yi,n+1 =
∑
i∈I

yi,n+1 + ym+1,n+1 =
∑
i∈I

yi,n+1 + λ =
∑
i∈I

∑
j∈J

uij − P

⇒
∑
i∈I

yi,n+1 =
∑
i∈I

∑
j∈J

uij − (P + λ)

Now, for i ∈ I,∑
j∈J ′

y
′
ij = a

′
i =

∑
j∈J

uij

⇒
∑
i∈I

∑
j∈J ′

yij =
∑
i∈I

∑
j∈J

uij

⇒
∑
i∈I

∑
j∈J

yij +
∑
i∈I

yi,n+1 =
∑
i∈I

∑
j∈J

uij

⇒
∑
i∈I

∑
j∈J

yij +
∑
i∈I

∑
j∈J

uij − (P + λ) =
∑
i∈I

∑
j∈J

uij

⇒
∑
i∈I

∑
j∈J

yij = P + λ

This implies that total quantity transported from the sources in I to the destinations in
J is (P +λ) > P , a contradiction to assumption that total flow is P and hence {yij}I′×J ′

can not provide a feasible solution to (RTP ). �

Theorem 4.2. There is a one -to-one correspondence between the feasible solution to
problem (EP ) and the corner feasible solution to problem (RTP ).
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Proof. Let{xij}I×J be a feasible solution of (EP ).
Define {yij}I′×J ′ by the following transformation

yij = xij ;∀i ∈ I, ∀j ∈ J

yi,n+1 =
∑
j∈J

uij −
∑
j∈J

xij ;∀i ∈ I

ym+1,j =
∑
i∈I

uij −
∑
i∈I

xij ; ∀j ∈ J

ym+1,n+1 = 0

It can be shown that{yij}I′×J ′ so defined is a cfs to (RTP ).

Since, lij ≤ xij ≤ uij and yij = xij ;∀i ∈ I, ∀j ∈ J

Therefore, lij ≤ yij ≤ uij ; ∀i ∈ I, ∀j ∈ J

Since,
∑
j∈J

xij ≥ ai; ∀i ∈ I and yi,n+1 =
∑
j∈J

uij −
∑
j∈J

xij ; ∀i ∈ I,

Therefore, 0 ≤ yi,n+1 ≤
∑
j∈J

uij − ai; ∀i ∈ I

Since,
∑
i∈I

xij ≥ bj ;∀j ∈ J and by definition of ym+1,j , we have

0 ≤ ym+1,j ≤
∑
i∈I

uij − bj ; ∀j ∈ J

Clearly, ym+1,n+1 ≥ 0

Now, yij = xij ; ∀i ∈ I, ∀j ∈ J and definition of yi,n+1 implies that∑
j∈J ′

yij =
∑
j∈J

yij + yi,n+1 =
∑
j∈J

xij +
∑
j∈J

uij −
∑
j∈J

xij =
∑
j∈J

uij = ai

For i = m+ 1,∑
j∈J ′

ym+1,j =
∑
j∈J

yij + ym+1,n+1

=
∑
j∈J

(
∑
i∈I

uij −
∑
i∈I

xij)

=
∑
i∈I

∑
j∈J

uij −
∑
i∈I

∑
j∈J

xij
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=
∑
i∈I

∑
j∈J

uij − P = a
′
m+1

Therefore,
∑
j∈J ′

yij = a
′
i, i ∈ I

′

Similarly, it can be shown that
∑
i∈I′

yij = b
′
j , j ∈ J

′

Therefore, {yij}I′×J ′ is a cfs to problem (RTP ) .

Conversely, let {yij}I′×J ′ be a cfs to problem (RTP ). Define xij , i ∈ I, j ∈ j by the
following transformation.

xij = yij ;∀i ∈ I, ∀j ∈ J

It implies that lij ≤ xij ≤ uij and integers,∀i ∈ I, ∀j ∈ J
Now, for i ∈ I, the source constraints in problem (RTP ) implies

∑
j∈J ′

yij = a
′
i =

∑
j∈J

uij

∑
j∈J

yij + yi,n+1 =
∑
j∈J

uij

⇒ ai ≤
∑
j∈J

yij ≤
∑
j∈J

uij because (0 ≤ yi,n+1 ≤
∑
j∈J

uij − ai; ∀i ∈ I)

Hence,
∑
j∈J

yij ≥ ai;∀i ∈ I and subsequently
∑
j∈J

xij ≥ ai; ∀i ∈ I)

Similarly,
∑
i∈I

yij ≥ bj ; ∀j ∈ J and subsequently
∑
i∈I

xij ≥ bj ; ∀j ∈ J)

For i = m+ 1

∑
j∈J ′

ym+1,j = a
′
m+1 =

∑
i∈I

∑
j∈J

uij − P

⇒
∑
j∈J

ym+1,j =
∑
i∈I

∑
j∈J

uij − P because ym+1,n+1 = 0

Now, for j ∈ J the destination constraints in (RTP ) give
∑
i∈I

yij + ym+1,j =
∑
i∈I

uij

Therefore,
∑
i∈I

∑
j∈J

yij +
∑
j∈J

ym+1,j =
∑
i∈I

∑
j∈J

uij
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⇒
∑
i∈I

∑
j∈J

yij =
∑
i∈I

∑
j∈J

uij −
∑
j∈J

ym+1,j = P

⇒
∑
i∈I

∑
j∈J

xij = P

Therefore, {xij}I×J is a feasible solution of (EP ).

�

Remark 4.1. If problem (RTP ) has a cfs ,then since c
′
m+1,n+1 = M = d

′
m+1,n+1 =

e
′
m+1,n+1 = f

′
m+1,n+1, it follows that non-corner feasible solution cannot be an optimal

solution of problem (EP ) .

Theorem 4.3. The value of the objective function of problem (EP ) at a feasible solution
{xij}I×J is equal to the value of the objective function of problem (RTP ) at its correspond-
ing cfs {yij}I′×J ′ and conversely.

Proof. The value of the objective function of (RTP ) at a feasible solution {yij}I′×J ′ is

z = [

∑
i∈I′

∑
j∈J ′

c
′
ijyij∑

i∈I′

∑
j∈J ′

d
′
ijyij

+

∑
i∈I′

∑
j∈J ′

e
′
ijyij∑

i∈I′

∑
j∈J ′

f
′
ijyij

]

= [

∑
i∈I

∑
j∈J

c
′
ijyij +

∑
j∈J

c
′
m+1,jym+1,j +

∑
j∈J

c
′
i,n+1yi,n+1 + c

′
m+1,n+1ym+1,n+1∑

i∈I

∑
j∈J

d
′
ijyij +

∑
j∈J

d
′
m+1,jym+1,j +

∑
j∈J

d
′
i,n+1yi,n+1 + d

′
m+1,n+1ym+1,n+1

]

+[

∑
i∈I

∑
j∈J

e
′
ijyij +

∑
j∈J

e
′
m+1,jym+1,j +

∑
j∈J

e
′
i,n+1yi,n+1 + e

′
m+1,n+1ym+1,n+1∑

i∈I

∑
j∈J

f
′
ijyij +

∑
j∈J

f
′
m+1,jym+1,j +

∑
j∈J

f
′
i,n+1yi,n+1 + f

′
m+1,n+1ym+1,n+1

]

= [

∑
i∈I

∑
j∈J

cijxij∑
i∈I

∑
j∈J

dijxij
+

∑
i∈I

∑
j∈J

eijxij∑
i∈I

∑
j∈J

fijxij
]

= value of objective function of problem (EP )at its corresponding feasible solution{xij}I×J

because ∀i ∈ I, j ∈ J, c′ij = cij , d
′
ij = dij , e

′
ij = eij , f

′
ij = fij ;xij = yij ; ym+1,n+1 = 0

c
′
i,n+1 = c

′
m+1,j = d

′
i,n+1 = d

′
m+1,j = e

′
i,n+1 = e

′
m+1,j = f

′
i,n+1 = f

′
m+1,j = 0

The converse can be proved in a similar way. �

Theorem 4.4. There is a one -to-one correspondence between the optimal solution to
problem (EP ) and optimal solution among the corner feasible solution to problem (RTP ).
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Proof. Let {x0ij}I×J be an optimal solution to problem (EP ) yielding objective function

value z0 and {y0ij}I′×J ′ be the corresponding feasible solution to (RTP ). Then by Theorem

(4.3), the value yielded by {y0ij}I′×J ′ is z0. If possible, let {y0ij}I′×J ′ be not an optimal

solution to (RTP ). Therefore, there exists a corner feasible solution {y′
ij} to (RTP ) with

the value z1 < z0. Let {x′
ij} be the corresponding feasible solution to (EP ).Then by

theorem (4.3), z1 = [

∑
i∈I

∑
j∈J

cijx
′
ij∑

i∈I

∑
j∈J

dijx
′
ij

+

∑
i∈I

∑
j∈J

eijx
′
ij∑

i∈I

∑
j∈J

fijx
′
ij

] which is less than z0, a contradiction to the

assumption that {x0ij}I×J is an optimal solution to (EP ). Hence,{y0ij}I′×J ′ must be an

optimal solution to (RTP ). Similarly, it can be proved that an optimal feasible solution
to (RTP ) will give an optimal solution to (EP ). �

Theorem 4.5. Optimizing problem (RTP ) is equivalent to optimizing problem (EP ) pro-
vided problem (EP ) has a feasible solution.

Proof. As problem (EP ) has a feasible solution , by theorem (4.2), there exists a cfs to
problem (RTP ). Thus, by remark (4.1),an optimal solution to problem (RTP ) will be a
cfs. Hence, by theorem (4.5), an optimal solution to problem (EP ) can be obtained. �

5. Algorithm

Step 1:Given a fractional capacitated transportation problem (EP ) with enhanced
flow, form a related transportation problem (RTP ) by introducing a dummy source and
a dummy destination.
Step 2:Find an initial basic feasible solution to (RTP ). Let B be its corresponding basis.

Step 3:Calculate dual variables u1i , u
2
i , u

3
i , u

4
i , v

1
j , v

2
j , v

3
j , v

4
j ; i ∈ I

′
, j ∈ J

′
by using the

equations given below and taking one of the u′is or v
′
js as zero.

u1i + v1j = c
′
ij ;u

2
i + v2j = d

′
ij ;u

3
i + v3j = e

′
ij ;u

4
i + v4j = f

′
ij , ∀(i, j) ∈ B

u1i + v1j = z1ij ;u
2
i + v2j = z2ij ;u

3
i + v3j = z3ij ;u

4
i + v4j = z4ij ,∀(i, j) ∈ N1 and N2.

N1 and N2 denotes the set of non- basic cells (i, j) which are at their lower bounds and
upper bounds respectively.
Step 4:Calculate θij , c

′
ij − z1ij ; d

′
ij − z2ij ; e

′
ij − z3ij ; f

′
ij − z4ij ; ∀i ∈ I

′
, j ∈ J ′

for all non- basic

cells and also calculate C0 =
∑
i∈I′

∑
j∈J ′

c
′
ijyij ;D

0 =
∑
i∈I′

∑
j∈J ′

d
′
ijyij ;E

0 =
∑
i∈I′

∑
j∈J ′

e
′
ijyij ;F

0 =∑
i∈I′

∑
j∈J ′

f
′
ijyij .

Step 5:Calculate δ1ij and δ2ij given by equation (1) and (2). If δ1ij ≥ 0;∀(i, j) ∈ N1 and

δ2ij ≥ 0;∀(i, j) ∈ N2, then the current solution so obtained is the optimal solution to

(RTP ) and subsequently to (EP ).Then go to step 6. Otherwise some (i, j) ∈ N1 for
which δ1ij ≤ 0 or some (i, j) ∈ N2 for which δ2ij ≤ 0 will enter the basis. Go to step 3.

Step 6:Find the optimal cost z0 = C0

D0 + E0

F 0

6. Numerical Illustration

Consider the following 3× 3 fractional plus fractional capacitated transportation prob-
lem.
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(EP ) : min{

3∑
i=1

3∑
j=1

cijxij

3∑
i=1

3∑
j=1

dijxij

+

3∑
i=1

3∑
j=1

eijxij

3∑
i=1

3∑
j=1

fijxij

}

subject to
3∑

j=1

x1j ≥ 30;
3∑

j=1

x2j ≥ 60;
3∑

j=1

x3j ≥ 90

3∑
i=1

xi1 ≥ 60;

3∑
i=1

xi2 ≥ 50;

3∑
i=1

xi3 ≥ 40

3∑
i=1

3∑
j=1

xij = P = 200 > max(
3∑

i=1

ai = 180,
3∑

j=1

bj = 150)

1 ≤ x11 ≤ 20; 2 ≤ x12 ≤ 10; 0 ≤ x13 ≤ 20

0 ≤ x21 ≤ 20; 2 ≤ x22 ≤ 20; 1 ≤ x23 ≤ 50

1 ≤ x31 ≤ 50; 4 ≤ x32 ≤ 40; 3 ≤ x33 ≤ 30

In order to solve (EP ), we first convert it into related transportation problem (RTP )

Table 1. Cost table

origin↓ destinations → D1 D2 D3
O1 (cij , dij)→ (2,3) (3,4) (4,5)

(eij , fij)→ (5,4) (9,6) (9,2)

O2 (cij , dij)→ (1,4) (2,4) (2,6)

(eij , fij)→ (4,3) (2,3) (1,7)

O3 (cij , dij)→ (1,3) (5,1) (6,4)

(eij , fij)→ (2,4) (2,3) (8,2)

with ci4 = 0 = di4 = ei4 = fi4 for i = 1, 2, 3 and c4j = 0 = d4j = e4j = f4j for
j = 1, 2, 3 and c44 = d44 = e44 = f44 = M . Also, 0 ≤ x14 ≤ 20; 0 ≤ x24 ≤ 30; 0 ≤

x34 ≤ 30; 0 ≤ x41 ≤ 30; 0 ≤ x42 ≤ 20; 0 ≤ x43 ≤ 60;x44 ≥ 0; a
′
1 =

3∑
j=1

u1j = 50; a
′
2 =

3∑
j=1

u2j = 90; a
′
3 =

3∑
j=1

u3j = 120; a
′
4 =

3∑
i=1

3∑
j=1

uij − P = 260 − 200 = 60; b
′
1 =

3∑
i=1

ui1 =

90; b
′
2 =

3∑
i=1

ui2 = 70; b
′
3 =

3∑
i=1

ui3 = 100. Find an initial basic feasible solution to the

(RTP ) so formed. This solution is shown in table 2 and is tested for optimality. In table
2, C0 = 473;D0 = 719;E0 = 518;F 0 = 897

Since in table 3, δ1ij ≥ 0;∀(i, j) ∈ N1 and δ2ij ≥ 0;∀(i, j) ∈ N2 , therefore the solution in

table 2 is an optimal solution of problem (RTP ) and hence yields an optimal solution of
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Table 2. Corner feasible solution of problem (RTP )

xij D1 D2 D3 D4 u1i u2i u3i ui4
O1 20 10 0 20 2 3 5 4
O2 10 20 50 10 1 4 4 3
O3 50 37 3 30 5 1 2 3
O4 10 3 47 0 0 0 0 0
v1j 0 0 0 -1

v2j 0 0 0 -4

v3j 0 0 0 -4

v4j 0 0 0 -3

Notes.Entries of the form a and b represent non- ba-
sic cells which are at their lower and upper bounds
respectively. Entries in bold are basic cells.

Table 3. Computation of δ1ij and δ2ij

NB O1D2 O1D3 O1D4 O2D2 O2D3 O3D1 O3D3 O3D4
θij 0 19 0 10 10 3 17 3

c
′
ij − z1ij 1 2 -1 1 1 -4 1 -4

d
′
ij − z2ij 1 2 1 0 2 2 3 3

e
′
ij − z3ij 4 4 -1 -2 -3 0 6 2

f
′
ij − z4ij 2 -2 -1 0 4 1 -1 0

δ1ij and δ2ij 0 0.131 0 0.0083 0.0665 0.0243 0.1055 0.0185

(EP ) with minimum cost = z0 = 473
719 + 518

897 = 1.2353.We also verified this optimal solution
by using a computing software Excel Solver.

7. Conclusion

In order to solve a capacitated transportation problem where the objective function is
a sum of two fractional functions and the total flow constraint is enhanced to a specified
level, a related transportation problem is formulated which possesses a corner feasible
solution. Optimal solution to enhanced flow problem can be determined from optimal
corner feasible solution to related transportation problem. As future work, it is intended
to apply proposed algorithm to a sum of n fractional functions when the decision variables
are bounded. Moreover, the developed algorithm can also be applied in a solid fixed
charge capacitated transportation problem, indefinite quadratic transportation problem,
fuzzy transportation problem , with or without flow constraint.
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