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THE THEORY OF REPRESENTATIONS OF GROUPS SO0(2, 1)

AND ISO(2, 1). WIGNER COEFFICIENTS OF THE GROUP SO0(2, 1)

B. A. RAJABOV1, §

Abstract. This paper is devoted to the representations of the groups SO(2, 1) and
ISO(2, 1). Those groups have an important role in cosmology, elementary particle theory
and mathematical physics. Irreducible unitary representations of the principal continuous
and supplementary as well as discrete series were obtained. Explicit expressions for
spherical functions of the group SO0(2, 1) are obtained through the Gauss hypergeometric
functions. The Wigner coefficients of the group SO0(2, 1) were computed and their
explicit expressions using the bilateral series were represented. The results could be used
to study the non-degenerate representations of the de Sitter group SO(3, 2).
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1. Introduction

Representations of the group SO0(2, 1) appear in various problems of theoretical and
mathematical physics, in particular, as a group of motions in general theory of relativity
and in dual models of hadron reactions [1, 2, 3, 4]. Representations of groups SU(1, 1)
and SL(2, R), which are universal covering groups for the group SO0(2, 1) and are locally
isomorphic to it, were studied in [5, 6, 7] using methods of integral geometry and invariant
bilinear forms.

On the other hand, the group SO0(2, 1) is the normal divisor of a non-homogeneous
group ISO(2, 1) - the group of motions in the three-dimensional pseudo-Euclidean space.
The group ISO(2, 1) is the stationary subgroup of a surface of transitivity, namely of the
cone of the de Sitter group SO(3, 2). Because of the group ISO(2, 1) and its represen-
tations play an important role in the study of non-degenerate representations of the de
Sitter group SO(3, 2).

This article is an introductory part of the work devoted to the theory of non-degenerate
representations and Wigner coefficients of the de Sitter group SO(3, 2). Since it is of
independent interest, we decided to publish it separately.
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2. IRREDUCIBLE UNITARY REPRESENTATIONS OF SO0(2, 1)

The group SO0(2, 1) is a connected component unit of the group of motions in the
3-dimensional pseudo-Euclidean space retaining invariant the following quadratic form:

[k, k] = k2
0 − k2

1 − k2
2.

It is three-parametric, similar to the group of rotations of 3-dimensional Euclidean
space. We introduce the following system of coordinates on the upper field of a hyperboloid
[k, k] = 1, k0 > 0:

[k, k] = (coshα, sinhα sinφ, sinhα cosφ).

Since the upper field of the hyperboloid [k, k] = 1, k0 > 0, is a transitive surface with
k = (1, 0, 0) as a fixed point one can get the following decomposition:

g = r(φ1)h(α)r(φ2), (1)

where r(·) is a rotation on the plane (k1, k2) and h(·) is a hyperbolic rotation on the plane
(k0, k2).

The representation of the group SO0(2, 1) will be constructed in the space of infinitely
differentiable homogeneous functions Fσ, defined on the upper field of the cone without
the vertex [k, k] = 1, k0 > 0, and the degree of homogeneity σ:

F (ak) = aσF (k), a > 0, (2)

T (g)F (k) = F
(
g−1k

)
, g ∈ SO(2, 1). (3)

Introduce the following system of coordinates on the cone [k, k] = 0, k0 > 0:

k = ω(1, sinφ, cosφ), ω > 0, 0 ≤ φ < 2π. (4)

Then applying (2)-(4) one can establish an isomorphism between the space Fσ and the
space of infinitely differentiable functions on the circle S1:

F (k) = ωσf(φ), f(φ) = F (k)|ω=1. (5)

We use the same notation Fσ for the space of infinitely differentiable functions on the
circle. The usual Fourier decomposition forms a canonical basis:

f(φ) =
+∞∑

m=−∞
fme

imφ. (6)

It is obvious that a restriction of the representation (3) to the subgroup of rotations on
the plane (k1, k2) is an additive group on the circle:

T (r(φ1)) f(φ) = f(φ− φ1). (7)

The restriction of the representation (3) to the subgroup of hyperbolic rotations on the
plane (k0, k2) is given by the following formula1:

T (h(α)) f(φ) = ωσαf (φα) , (8)

where

ωα = coshα− sinhα cosφ,

sinφα = sinφ/ωα,

cosφα = (− sinhα+ coshα cosφ) /ωα. (9)

1The representations of the group SO0(2, 1) in contrast to the representations of its universal covering
groups SU(1, 1) and SL(2, R) do not have a parity and corresponds to even representations of these groups.
To construct representations of the group SO0(2, 1) with a certain parity, it suffices to replace the circle{
S1 : 0 ≤ φ < 2π

}
by its double cover

{
S1 : 0 ≤ φ < 4π

}
.
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Irreducible unitary representations of continuous principal series are obtained by intro-
ducing the following scalar product in Fσ:2

(
f (1), f (2)

)
=

1

2π

2π∫
0

f (1)(φ)f (2)(φ)dφ, (10)

It follows from (9) that the measure dφ at the hyperbolic rotations (8) is transformed
as:

dφα = dφ/ωα. (11)

Obviously, it is invariant under rotations (7). It is also obvious that functions eimφ form
the orthonormal canonical basis with respect to the scalar product (10). It follows from
(7)-(9) and (11) that the scalar product (10) is invariant if the degree of homogeneity σ is
as follows:

σ = −1/2 + iρ, −∞ < % < +∞, (12)

Unitarity and irreducibility of other series of representations in this space are studied
by constructing invariant Hermit-bilinear functionals:

(f (1), f (2)) =
1

4π2

2π∫
0

2π∫
0

K(φ1, φ2)f (1)(φ1)f (2)(φ2)dφ1dφ2. (13)

Here K(φ1, φ2) is a generalized function over the space Fσ ⊗Fσ, [8].
The invariance condition and also formulas (7)-(8) and (11) imply that K(φ1, φ2) is a

function, which:

• K(φ1, φ2) – depends on the difference of variables (φ1 − φ2);
• K(φ1, φ2) – satisfies the following equation:

K(φ1α, φ2α) = ωσ̄+1
α (φ1)ωσ+1

α (φ2)K(φ1, φ2), (14)

where ωα(·) is defined in (9). One can show that the solution of the equation (14) exists
only when σ̄ = σ, and this solution is:

K(φ1, φ2) = c [1− cos (φ1 − φ2)]−σ−1 . (15)

Here c – is an arbitrary constant.
Thus the invariant Hermit-bilinear form in the space Fσ ⊗Fσ can be expressed as:

(f (1), f (2)) =
c

4π2

2π∫
0

2π∫
0

[1− cos (φ1 − φ2)]−σ−1 f (1)(φ1)f (2)(φ2)dφ1dφ2, (16)

where σ – is a real number.
In order to find the canonical expression of the (16) and to study non-degeneracy and

irreducibility of representations, it is necessary to find the Fourier expansion for the interior
of this integral representation. Since this expansion will be used to study equivalence of
representations of Wigner coefficients we consider complex values of σ, (see Appendix).

2Here the sign bar denotes the complex conjugate.
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3. COMPLEMENTARY AND DISCRETE SERIES OF REPRESENTATIONS

It follows from (68) that in order to provide regularization of the form (16) it suffices
to choose the arbitrary constant c as:

c = c0/Γ(−σ − 1/2),

since for this form λ = −σ − 1. Here c0 is an arbitrary constant.
In conclusion, for the invariant Hermit-bilinear form in the space Fσ ⊗Fσ we have the

following integral representation:

(f (1), f (2)) =
c0

4π2Γ(−σ − 1/2)

2π∫
0

2π∫
0

[1− cos (φ1 − φ2)]−σ−1 f (1)(φ1)f (2)(φ2)dφ1dφ2. (17)

Recall that here σ is a real number.
Applying (6) and (68) one can get the canonical form of the functional (17):

(f (1), f (2)) = c0
2−σ−1

√
πΓ(σ + 1)

+∞∑
m=−∞

Φmf
(1)
m f (2)

m , (18)

here

Φm =
Γ(m+ σ + 1)

Γ(m− σ)
. (19)

It follows from (19) that the form (18) to be positive definite it is necessary and sufficient
that the following condition is satisfied:

m+ σ + 1

m− σ
> 0

for all integer m and real numbers σ. This condition is satisfied only when −1 < σ < 0.
It is obvious that the form (18)- is non-degenerate for non-integer σ. Thus we get:

Theorem 3.1. The representation (7)-8 in the space Fσ is irreducible unitary with respect
to the scalar product (18) for −1 < σ < 0. This representation is called the complementary
series.

For integer values of the σ the form (18)-(19), obviously, degenerates. Selecting suitably
the arbitrary constant c0, we can extend the bilinear form (17) on integer values σ. As a
result we have the following degeneracy subspaces for integer values σ.

Form (18) degenerates on subspaces Fσ+ and Fσ- , where

Fσ+ = {Φm = 0, m = −σ, −σ + 1, −σ + 2, . . . , +∞} .
Fσ- = {Φm = 0, m = σ, σ − 1, σ − 2, . . . , −∞}

The space Fσ+ consists of functions of the form:

f(φ) =
+∞∑
m=−σ

fme
imφ = eiσφ

+∞∑
m=0

f
′
me

imφ.

The space Fσ- consists of functions of the form:

f(φ) =
σ∑

m=−∞
fme

imφ = eiσφ
+∞∑
m=0

f
′
me
−imφ.

It is clear that the union of these subspaces Fσ+
⋃
Fσ- is also a subspace of degeneration.
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On non-negative integer values of σ these subspaces intersect:

Fσ0 = Fσ+
⋂
Fσ- , σ = 0, 1, 2, . . .

It is obvious that the form (19) degenerates on a subspace Fσ0 , where

Fσ0 = {Φm = 0, m = −σ, −σ + 1, . . . , σ − 1, σ} .
The space Fσ0 consists of functions of the form:

f(φ) =

σ∑
m=−σ

fme
imφ

Thus, we get the following result:

Theorem 3.2. For integral values of σ the representation (7)-(8) of the group SO(2, 1)
acting in the factor-spaces Fσ/Fσ+, Fσ/Fσ- and Fσ/Fσ+

⋃
Fσ- . Furthermore, for nonneg-

ative integers σ the representation of SO(2, 1) acting in the factor-space Fσ/Fσ0 . These
representations are irreducible unitary representations with respect to the scalar product
(18)-(19) and is called a discrete series.

4. SPHERICAL FUNCTIONS OF THE GROUP SO0(2, 1)

Spherical functions of the group SO0(2, 1) are one of the important group quantities
and in this section, we will deal with their direct calculation. A particular case of spherical
functions is the zonal functions that are the matrix elements of the ”zero” column, [6].

The zonal functions of the group SO0(2, 1) are determined from (8)-(10) as matrix
elements of the operator of hyperbolic rotations in the plane (k0, k2) invariant under the
subgroup SO(2) of the form of the following integral representation:

Z [2,1]
σ (α) =

1

2π

2π∫
0

(coshα− sinhα cosφ)σ dφ (20)

We represent the integrand in the form of a Taylor series:

(coshα− sinhα cosφ)σ = (coshα)σ
∞∑
n=0

(−σ)n
n!

(tanhα cosφ)n (21)

Substituting (21) into (20) and integrating term by term for the zonal function of the
group SO0(2, 1), we obtain the expression in terms of the Gauss hypergeometric function:

Z [2,1]
σ (α) = (coshα)σ 2F1

(
1− σ

2
,−σ

2
; 1; tanh2 α

)
. (22)

It is easy to see that the formula (22) coincides with the expressions for the zonal functions
of the group SO(p, q) for p = 2, q = 1, [12]. In addition, using (9)-(11) from the integral
representation (20) one can obtain:

Z
[2,1]
−1−σ(α) = Z [2,1]

σ (α).

This is the result of the equivalence of representations σ and (−1− σ).
In a similar way, it is possible to calculate the associated functions of the group

SO0(2, 1). For associated functions, we have the following integral representation:

P [2,1]
σm (α) =

1

2π

2π∫
0

(coshα− sinhα cosφ)σ eimϕdφ (23)
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Again, we use the Taylor series (21) and transform the integral (23) to the form:

P [2,1]
σm (α) =

(coshα)σ

2π

∞∑
n=0

(−σ)n
n!

(tanhα)n
2π∫
0

(cosφ)n eimϕdφ.

The last integral after integration can be reduced to the form:

P [2,1]
σm (α) =

(−σ)m
2mm!

(coshα)σ (tanhα)m 2F1

(
m− σ

2
,
m− σ + 1

2
;m+ 1; tanh2 α

)
. (24)

It is easy to see that the formula (24) coincides with (22) for m = 0. Moreover, we can
verify that the following relation holds:

P
[2,1]
σ,−m(α) = (−1)mP [2,1]

σm (α). (25)

The formulas (24) and (25) allow us to obtain associated functions of the group SO0(2, 1)
for all integer values of m.

5. THE INDUCED REPRESENTATIONS OF THE GROUP ISO(2, 1)

The group ISO(2, 1) is a regular semi-direct product of the group 3-dimensional trans-
lations of T3 with the group SO(2, 1):

ISO(2, 1) = T3 C SO(2, 1).

Moreover, the subgroup SO(2, 1) is isomorphic to the automorphism group of the additive
subgroup T3, and T3 is in turn normal divisor of the group ISO(2, 1). The induced
representations of such semi-direct products are constructed by the orbit method, which
is a generalization of the Wigner’s ”small group” method in the case of the Poincaré group,
[13].

In this section, instead of using the results of the general theory we shall construct
irreducible unitary representations of the group ISO(2, 1) directly.

The element g = (~a, r) of the group ISO(2, 1) can be represented in the following
splitting form:

g = A (~a) Υ(r), (26)

where

• A (~a) - translation to the vector ~a in space M3 and A (~a) ∈ T3;
• Υ(r) - hyperbolic and orthogonal rotations around the origin of the coordinates in

the space M3 and Υ(r) ∈ SO(2, 1).

The multiplication law for the elements of the group in this notation has the form:

(~a1, r1)× (~a2, r2) = (~a1 + r1~a2, r1r2) (27)

It is also obvious that, up to isomorphism, we have:

A (~a) = (~a, 1) , Υ(r) =
(
~0, r

)
. (28)

It follows from (26) and (28) that restrictions of any irreducible unitary representation
of the group ISO(2, 1) on the subgroups T3 and SO(2, 1) are unitary representations of
these subgroups.

The groups ISO(2, 1), induced by representations, will be constructed using the group
characters of the subgroup T3.
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As is known from the theory of representations of abelian groups [6], that any irreducible
unitary representation of the commutative group is one-dimensional and is represented by
an exponent:

χ~p (~a) = ei(~p·~a), ~p · ~a = p0a0 − p1a1 − p2a2. (29)

Here χ~p (~a) is called the character group, and the vector ~p uniquely characterizes the
representation. From (29) it is obvious that the characters of the group form an additive
group:

χ~p(1) (~a) · χ~p(2) (~a) = χ~p(1)+~p(2) (~a) (30)

The choice of a scalar product in form (29) allows to define an isomorphism of the
subgroup SO(2, 1) into the group of automorphisms of the character’s group:(

Υ(r)χ~p
)

(~a) = χ~p (r~a) = χr−1~p (~a) . (31)

Here we used the invariance of the scalar product (29) with respect to the subgroup
SO(2, 1). On the other hand, the formula (29) for character allows to determine the action
of the translation subgroup T3:(

A
(
~b
)
χ~p

)
(~a) = χ~p

(
~a+~b

)
= ei(~p·

~b)χ~p (~a) (32)

From (31) it is obvious that these characters form the following surface in M3:

p2
0 − p2

1 − p2
2 = m2, (33)

where m2 is an arbitrary real number characterizing the spectrum of irreducible unitary
representations of the subgroup T3, which are included to the restriction of an irreducible
unitary representation of the group ISO(2, 1) to this subgroup. Here, the manifold (33) is
an orbit of the subgroup SO(2, 1). In other words, the orbit (31) is homogeneous space with
respect to the subgroup SO(2, 1) and consist of points corresponding to representations
subgroups T3 that are included in the restriction of an irreducible unitary representation
of the group ISO(2, 1) onto subgroup T3. A quasi-invariant measure on this manifold has
the following form:

δ
(
~p 2 −m2

)
(d~p) =

dp1dp2

2
√
m2 + p2

1 + p2
2

. (34)

The Wigner’s ”small group” method consists in constructing the representations of the
group ISO(2, 1) by inducing representations of a stationary subgroup (i.e. ”small group”)
of the orbit (33).

Representations of the group ISO(2, 1) will be constructed in the space of the group
characters of the subgroup T3, i.e. in the space of infinitely differentiable functions with the
compact support D∞c (~p; ·), defined on the surface (33) with values in space representations
of the stationary subgroup of the orbit (33):3

(U(~a, r)f) (~p) = e−i(~p·~a)∆ (w (~p, r)) f
(
r−1~p

)
, (35)

where w (~p, r) is an element of a small group, the so-called Wigner rotation, and ∆ (w (~p, r))
is an irreducible representation of a small group.

To calculate the Wigner rotation, we use the Wigner operator h (~p, p̊), which takes a
fixed point p̊ to the point ~p:

h (~p, p̊) p̊ = ~p. (36)

It is obvious that the Wigner operator h (~p, p̊), is determined with the accuracy of the
element of the stationary subgroup and the choice of one of them, as well as the choice of a

3In quantum mechanics, this construction of representations corresponds to transition from the coordi-
nate representation to the momentum representation.
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fixed point p̊ means choice of representative among the class of equivalent representations
of the small group. In the following formulas, the fixed point p̊ we will not indicate. The
Wigner rotation w (~p, r) is determined from the following condition:

r−1h (~p)w (~p, r) = h
(
r−1~p

)
,

i.e.

w (~p, r) = h−1 (~p) rh
(
r−1~p

)
. (37)

Otherwise, the operators U (·, ·) form a representation of the group ISO(2, 1). From
the general theory of induced representations of Mackey, it follows that it is irreducible
and unitary if the representation ∆ (·) of the small group is irreducible and unitary, and
the surface (33) is the base of imprimitivity, [13].

Now it is necessary to define transitivity surfaces from (33) and stationary subgroups
for different values of m2.

(1) m2 > 0.
In this case, the surface of transitivity is a two-sheeted hyperboloid. As a fixed

point, we choose: p̊ = (m, 0, 0). Then the stationary subgroup is the rotation group
SO(2) on the plane (p1, p2).4 On this surface we choose a spherical coordinate
system:

~p = m(coshα, sinhα sinϕ, sinhα cosϕ); −∞ < α < +∞, 0 ≤ ϕ < 2π. (38)

The corresponding decomposition of the elements of the subgroup SO(2, 1) and
the quasi-invariant measure dµ will look like:

Υ(r) = R(ϕ2)h02(α)R(ϕ1); dµ =
1

2
tanhαdα dϕ. (39)

Here R(·) is the rotation in the plane (p1, p2), and h02(·) – hyperbolic rotation
on the plane (p0, p2).

Since the irreducible unitary representations of the small group, i.e. of the
rotation group SO(2) on the plane (p1, p2) are given an integer s, [6-7], then
irreducible unitary representations of group ISO(2, 1) will be given by the numbers
(m, s):5 (

U (m,s)(~a, r)f
)

(~p) = e−i(~p·~a)eisφf
(
r−1~p

)
(40)

Here the Wigner rotation φ (r, ~p) is defined from the equations (37):

R(φ) = h−1 (~p) rh
(
r−1~p

)
, (41)

where

h (~p) = R(ϕ)h02(α),

is the Wigner’s operator.
(2) m2 < 0.

In this case, the surface of transitivity is a one-sheeted hyperboloid. As a fixed
point, we choose: p̊ = (0, 0,m). Then the stationary subgroup is the hyperbolic
rotation group on the plane (p0, p1). On this surface we choose a hyperbolic coor-
dinate system:

~p = m(sinhα coshβ, sinhα sinhβ, coshα), (42)

4Obviously, for another choice of a fixed point, we obtain an equivalent stationary subgroup.
5The notation (m, s) for irreducible unitary representations is chosen from the considerations that in the

case of the Poincaré group, m and s correspond to the mass and spin of elementary particles, respectively.
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where α, β are real numbers. The corresponding decomposition of the elements of
the subgroup SO(2, 1) and the quasi-invariant measure dµ will look like:

Υ(r) = h01(β2)h02(α)h01(β1), dµ =
1

2
sinhαdαdβ. (43)

Since the irreducible unitary representations of a small group, i.e. group of
hyperbolic rotations SH(2) ≡ SO(1, 1) on the plane (p0, p1) are given real number
s, [6], then the irreducible unitary representations of the group ISO(2, 1) will be
given by the numbers (m, s): 6(

U (m,s)(~a, r)f
)

(~p) = e−i(~p·~a)eisθf
(
r−1~p

)
(44)

The Wigner rotation θ (r, ~p) is determined from equations (37):

h01 (θ) = h−1 (~p) rh
(
r−1~p

)
, (45)

where
h (~p) = h01(β)h02(α),

is the Wigner’s operator.
(3) m2 = 0, ~p 6= ~0.

On this surface we choose a stereographic coordinate system:

~p = τ

(
1 + a2

2
, a,

1− a2

2

)
; −∞ < a < +∞, τ > 0. (46)

The corresponding decomposition of the elements of the subgroup SO(2, 1) and
the quasi-invariant measure dµ will look like:

Υ(r) = B(b)D(τ)Z(z) = h01(β2)h02(α)h01(β1), (47)

dµ = τ (1− a)2 dτda = e2α (1− a)2 dαda =
1

2
sinhαdαdβ. (48)

Here

B(b) =

1 + b2

2 a b2

2
b 1 b

− b2

2 −b 1− b2

2

 ; Z(z) =

1 + z2

2 z − z2

2
z 1 −z
z2

2 z 1− z2

2

 . (49)

The matrices Z(z) form the stationary subgroup of the fixed point and we choose:

p̊ = (1/2, 0, 1/2)

The matrices B(b), as well as the matrices Z(z), form an abelian subgroup.
The Wigner operator:

h (~p) = B(b)D(τ); D(τ) = h02(α), τ = eα; (50)

Since irreducible unitary representations of a small group, i.e. one-dimensional
commutative group Z(z), are given by a real number Λ, [6], the irreducible unitary
representations of the groups ISO(2, 1) will be determined by the real number λ:7(

U (0,λ)(~a, r)f
)

(~p) = e−i(~p·~a)eiλζf
(
r−1~p

)
(51)

The Wigner rotation ζ (r, ~p) is determined from equations (37):

h02 (ζ) = h−1 (~p) rh
(
r−1~p

)
, (52)

Here the operator Wigner h (~p) is defined in (50).

6In the case of the Poincaré group this corresponds to elementary systems with continuous spin, [14].
7In the case of the Poincaré group this corresponds to elementary systems with continuous helicity.
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(4) m2 = 0, ~p = ~0.
In this case, the stationary subgroup is the group SO(2, 1) and representations

of the group ISO(2, 1) coincide with the representations of the subgroup SO(2, 1),
studied in the sections 2-3.

6. WIGNER’s COEFFICIENTS OF THE GROUP SO0(2, 1)

In this section we study invariant three-linear functionals in the space Fσ1⊗Fσ2⊗Fσ3 .
According to the kernel theorem, the invariant three-linear forms will have the following
form, [8]:

(f (1), f (2), f (3)) =
1

(2π)3

2π∫
0

2π∫
0

2π∫
0

K(3)(φ1, φ2, φ3)f (1)(φ1)f (2)(φ2)f (3)(φ3)dφ1dφ2dφ3. (53)

HereK(3)(φ1, φ2, φ3) – is a generalized function over the space Fσ1⊗Fσ2⊗Fσ3 . It follows

from the invariance condition and also from (7)-(8) that K(3)(φ1, φ2, φ3) is a function
depending on differences of variables φ1−φ2, φ2−φ3, φ3−φ1 and satisfying the following
equation:

K(3)(φ1α, φ2α, φ3α) = ωσ1+1
α (φ1)ωσ2+1

α (φ2)ωσ3+1
α (φ3)K(3)(φ1, φ2, φ3), (54)

where ωα(·) is defined in (9).
It is possible to show that the functional equation (54) has a solution with the accuracy

of constant:

K(3)(φ1, φ2, φ3) = c
[1− cos (φ1 − φ2)]β3

Γ (β3 + 1/2)

[1− cos (φ2 − φ3)]β1

Γ (β1 + 1/2)

[1− cos (φ3 − φ1)]β2

Γ (β2 + 1/2)
. (55)

Here

β1 =
σ1 − σ2 − σ3 − 1

2
, β2 =

σ2 − σ3 − σ1 − 1

2
, β3 =

σ3 − σ2 − σ1 − 1

2
. (56)

Wigner coefficients are defined as the value of the functional (53) on elements of a
canonical basis:(

σ1 σ2 σ3

m1 m2 m3

)
=

c

(2π)3

2π∫
0

2π∫
0

2π∫
0

[1− cos (φ1 − φ2)]β3

Γ (β3 + 1/2)

[1− cos (φ2 − φ3)]β1

Γ (β1 + 1/2)
×

× [1− cos (φ3 − φ1)]β2

Γ (β2 + 1/2)
eim1φ1eim2φ2eim3φ3dφ1dφ2dφ3, (57)

where β1, β2, β3 are defined in (56).
Since the exponent is orthonormal it follows that the last expression is not zero only

under the condition:

m1 +m2 +m3 = 0, (58)

and after necessary integrations and transformations this expression is reduced to:(
σ1 σ2 σ3

m1 m2 m3

)
= c

2−(σ1+σ2+σ3+3)/2

π3/2
×

×
+∞∑

n=−∞

(−β3)n−m1(−β1)n+m3(−β2)n
Γ (n−m1 + β3 + 1) Γ (n+m3 + β1 + 1) Γ (n+ β2 + 1)

. (59)
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Here we have taken into account that

β1 + β2 + β3 = −σ1 + σ2 + σ3 + 3

2
.

The formula (59) can be reduced to the following form:(
σ1 σ2 σ3

m1 m2 m3

)
=

c(−1)m1
[
2σ1+σ2+σ3+3π

]−1/2

Γ (β2 + 1) Γ (−m1 + β3 + 1) Γ (m3 + β1 + 1)

(−β1)m3

(1 + β3)m1

×

× 3H3

 −β3 −m1, −β1 +m3, −β2;
1

−m1 + β3 + 1, m3 + β1 + 1, β2 + 1;

 , (60)

where 3H3 – is the bilateral series [11].
The arbitrary constant c is defined so that the following condition is satisfied:(

σ1 σ2 σ3

0 0 0

)
= 1. (61)

Then from (60)-(61) for the constant c we get:

c =
√

2σ1+σ2+σ3π
Γ (β1 + β2 + 1) Γ (β1 + β3 + 1) Γ (β2 + β3 + 1)

Γ (β1 + β2 + β3 + 1)
. (62)

Finally, taking into account (60) we get the following expression for Wigner coefficients:(
σ1 σ2 σ3

m1 m2 m3

)
=

(−1)m1δm1+m2+m3,0

Γ (β2 + 1) Γ (−m1 + β3 + 1) Γ (m3 + β1 + 1)
×

× Γ (β1 + β2 + β3 + 1)

Γ (β1 + β2 + 1) Γ (β1 + β3 + 1) Γ (β2 + β3 + 1)
×

×
(−β1)m3

(1 + β3)m1

3H3

 −β3 −m1, −β1 +m3, −β2;
1

−m1 + β3 + 1, m3 + β1 + 1, β2 + 1;

 . (63)

Here β1, β2, β3 are defined in (56).
From the invariance of three-linear form (53) implies the covariance property of the

Wigner coefficients (57):(
σ1 σ2 σ3

m1 m2 m3

)
=

∑
m
′
1m
′
2m
′
3

(
σ1 σ2 σ3

m
′
1 m

′
2 m

′
3

) 3∏
i=1

tσi
m
′
imi

(g) , ∀g ∈ SO0(2, 1). (64)

Here, tσ
m′ ,m

(g) are the matrix elements of the unitary irreducible representations of the

group SO0(2, 1) in the canonical basis (6).
The covariance property (64) plays a fundamental role when constructing the multi-

linear invariants of the representation of the group SO0(2, 1).

CONCLUSION

It is important to compare results obtained for the group SO(2, 1) with the theory of
representations of the Lorentz group SO(3, 1), [5, 6, 7, 13]. It can be seen from an analysis
given in Section 3, representations of the group SO(2, 1), despite the dimension reduction,
have a more complex and rich structure.

In conclusion, I would like to thank Prof. N.Atakishiyev and Prof. E.Veliev for their
attention to this work and discussion of results.
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Appendix. FOURIER EXPANSION OF THE FUNCTION (1− cosψ)λ.

We will formulate the Fourier-expansion of the function (1− cosψ)λ where λ ∈ C is a
complex number:

(1− cosψ)λ =

+∞∑
m=−∞

ame
imψ, (65)

am =
1

2π

2π∫
0

(1− cosψ)λ e−imψdψ. (66)

Applying Taylor series for the function (1− cosψ)λ and using the Gauss formula for
the hypergeometric function of the unit variable [6, 9, 11], we obtain:

am =
2λΓ(λ+ 1/2)√
πΓ(m+ λ+ 1)

(−λ)m. (67)

In these formulas we used the notation (−λ)n for the Pochhammer symbol [9, 11]. Thus
the expansion (65) has the form:

(1− cosψ)λ =
2λΓ(λ+ 1/2)√

π

+∞∑
m=−∞

(−λ)m
Γ(m+ λ+ 1)

eimψ. (68)

It can be seen from here that the integral (66) converges when Reλ > −1/2. This
integral can be considered in the sense of regularized values [10] when Reλ < −1/2.
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