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HEAD-ON COLLISION OF THE SOLITARY WAVES IN FLUID-FILLED

ELASTIC TUBES

A. E. OZDEN1, H. DEMIRAY1, §

Abstract. In the present work, by employing the field equations given in [15] and the
extended PLK method derived in [9], we have studied the head-on collision of solitary
waves in arteries. Introducing a set of stretched coordinates which include some unknown
functions characterizing the higher order dispersive effects and the trajectory functions
to be determined from the removal of possible secularities that might occur in the solu-
tion. Expanding these unknown functions and the field variables into power series of the
smallness parameter ε and introducing the resulting expansions into the field equations
we obtained the sets of partial differential equations. By solving these differential equa-
tions and imposing the requirements for the removal of possible secularities we obtained
the speed correction terms and the trajectory functions. The results of our calculation
show that both the evolution equations and the phase shifts resulting from the head-on
collision of solitary waves are quite different from those of Xue [15], who employed the
incorrect formulation of Su and Mirie [4]. As opposed to the result of previous works on
the same subject, in the present work the phase shifts depend on the amplitudes of both
colliding waves.
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1. Introduction

It is well-known that long-time asymptotic behavior of weakly nonlinear waves in various
media can be characterized by the Korteweg-de Vries (KdV) equation [1]. Since the inverse
scattering transform (IST) for exactly solving the KdV equation was found by Gardner,
Kruskal and Miura [2], the interesting features of the collision between solitary waves had
been revealed: When two solitary waves approach closely, they interact, exchange their
energies and positions with one another, and, then separate off, regaining their original
forms. Throughout the whole process of the collision, the solitary waves are remarkably
stable entities preserving their identities throughout the interaction. The unique effect
due to the collision is their phase shifts. It is believed that this striking colliding property
of solitary waves can only be preserved in integrable systems.
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There are two types of collision of solitary waves: overtaking and head-on collision.
According to IST, all the KdV solitary waves travel in the same direction, under the
boundary conditions vanishing at infinity [2, 3]; so for overtaking collision between solitary
waves, one can use the IST to obtain the overtaking colliding effect of solitary waves.
However, for the head-on collision between solitary waves, one must employ the some
kind of asymptotic expansion to solve the original field equations. In this regard, for the
study of head-on collision problems, a comprehensive analysis had been presented by Su
and Mirie [4], in which the Poincare-Lighthill-Kuo (PLK) method had been employed. In
their analysis, to determine the unknown trajectory functions they made the statement
that ”although certain terms do not cause any secularity at this order but they will cause
secularity at the higher order expansion, therefore, those terms must vanish”. Utilizing the
implications of this statement several researchers studied the head-on collision of solitary
waves in various media [5-8]. Unfortunately, in our previous work [9] we showed that the
terms mentioned in their work do not cause any secularity in the solution.

The measurement [10] for the simultaneous changes in amplitudes and form of the
flow and pressure waves at five sites from the ascending aorta to the saphenous artery in
dog shown that the pulsatile character of the blood wave is soliton-like and it suggests a
possible interpretation in terms of solitons. The blood flow in arteries can be considered as
an incompressible fluid flowing in a thin non-linear elastic tube. Theoretical investigations
for the blood waves by weakly nonlinear theory have been developed by [11-14]. It is shown
that the dynamics of the blood waves are governed by the KdV or modified KdV equations.
The solitary wave model gives a reasonable explanation for the peaking and steepening of
pulsatile waves in arteries. Head-on collision of solitary waves in fluid-filled elastic tubes
(a model for arteries) had been studied by several researchers [15-17], in all of which the
method proposed by Su and Mirie [4] have been employed. Unfortunately, as stated before,
the statement made by Su and Mirie is incorrect, accordingly, all the results reported in
[15-17] are not acceptable.

In the present work, by employing the field equations given in [15] and the extended
PLK method developed in [9], we have studied the head-on collision of solitary waves in
arteries. Introducing a set of stretched coordinates which include some unknown func-
tions characterizing the higher order dispersive effects and the trajectory functions to be
determined from the removal of possible secularities that might occur in the solution. Ex-
panding these unknown functions and the field variables into power series of the smallness
parameter ε and introducing the resulting expansions into the field equations we obtained
the sets of partial differential equations governing the coefficients of the series. By solving
these differential equations and imposing the non-secularity conditions in the solution we
obtained various evolution equations. By seeking a progressive wave solution to these
evolution equations we obtained the speed correction terms and the trajectory functions.
The results of our calculation show that both the evolution equations and the phase shifts
resulting from the head-on collision of solitary waves are quite different from those of Xue
[15], who employed the incorrect formulation of Su and Mirie [4]. As opposed to the result
of previous works on the same subject, in the present work the phase shifts depend on the
amplitudes of both colliding waves. It is further observed that the order of the trajectory
functions is ε2, rather than ε.

2. Basic Equations

To study the head-on collision of the blood solitary waves, we assume that the blood
waves propagate in a one- dimensional elastic tube, which is deemed to be a model for
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large artery, filled with an incompressible inviscid fluid, which is considered to be a simple
model for blood. We also assume that the arteries are circularly cylindrical homogeneous
tube with non-linear elasticity. Hence, the averaged non-dimensional equations of motion
of the tube and the fluid may be given by [18, 19]

∂S

∂t
+
∂u

∂x
+

∂

∂x
(Su) = 0, (1)

∂u

∂t
+
∂π

∂x
+

∂

∂x

(
u2

2

)
= 0, (2)

π =
2

2 + S

∂2S

∂t2
+

2S(2 + αS)

(2 + S)2
, (3)

where x and t are the non-dimensional space and time variables, S is the change in the
cross-sectional area of the tube, u and π are the axial velocity and the pressure of the fluid
body, respectively, and α characterizes the non-linearity of the tube material. For the
detail of the derivation of the equations (1)-(3) the readers are referred to the references
[18-19].

3. Extended PLK Method

Motivated with the results found in [9], for our future purposes, we introduce the fol-
lowing stretched coordinates

ε
1
2 (x− t) = ξ + εp(τ) + ε2P (ξ, η, τ),

ε
1
2 (x+ t) = η + εq(τ) + ε2Q(ξ, η, τ),

ε3
/2t = τ, (4)

where ε is the smallness parameter measuring the weakness of dispersion and nonlinearity,
p(τ) and q(τ) are two unknown functions characterizing the higher order dispersive effects,
P (ξ, η, τ) and Q(ξ, η, τ) are two unknown functions characterizing the trajectory functions.
Then, the following differential relations hold true

∂

∂x
=
ε
1
2

D

{[
1 + ε2

(
∂Q

∂η
− ∂P

∂η

)]
∂

∂ξ
+

[
1 + ε2

(
∂P

∂ξ
− ∂Q

∂ξ

)]
∂

∂η

}
,

∂

∂t
=ε1/2

{
ε
∂

∂τ
− 1

D

[
1 + ε2

(
dp

dτ
+
∂P

∂η
+
∂Q

∂η

)
+ ε3

∂P

∂τ
+ ε4

(
dp

dτ

∂Q

∂η
− dq

dτ

∂P

∂η

)
+ε5

(
∂P

∂τ

∂Q

∂η
− ∂Q

∂τ

∂P

∂η

)]
∂

∂ξ
+

1

D

[
1 + ε2

(
−dq
dτ

+
∂P

∂ξ
+
∂Q

∂ξ

)
− ε3∂Q

∂τ

+ε4
(
dp

dτ

∂Q

∂ξ
− dq

dτ

∂P

∂ξ

)
+ ε5

(
∂P

∂τ

∂Q

∂ξ
− ∂Q

∂τ

∂P

∂ξ

)]
∂

∂η

}
,

(5)

where D is defined by

D =

(
1 + ε2

∂P

∂ξ

)(
1 + ε2

∂Q

∂η

)
− ε4∂P

∂η

∂Q

∂ξ
. (6)

We assume that the field quantities can be expanded into asymptotic series in ε as

S = εS1 + ε2S2 + ε3S3 + . . . ,

u = εu1 + ε2u2 + ε3u3 + . . . ,
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p(τ) = p0(τ) + εp1(τ) + ε2p2(τ) + ε3p3(τ) + . . . ,

q(τ) = q0(τ) + εq1(τ) + ε2q2(τ) + ε3q3(τ) + . . . ,

P (ξ, η, τ) = P0(ξ, η, τ) + εP1(ξ, η, τ) + . . . ,

Q(ξ, η, τ) = Q0(ξ, η, τ) + εQ1(ξ, η, τ) + . . . . (7)

Introducing (5) and (7) into equations (1)-(3) and setting the coefficients of like powers of
ε equal to zero the following sets of equations are obtained:

O (ε) equations:

∂S1
∂η
− ∂S1

∂ξ
+
∂u1
∂η

+
∂u1
∂ξ

= 0,

∂π1
∂η

+
∂π1
∂ξ

+
∂u1
∂η
− ∂u1

∂ξ
= 0, π1 = S1, (8)

O
(
ε2
)

equations:

∂S2
∂η
− ∂S2

∂ξ
+
∂u2
∂η

+
∂u2
∂ξ

+
∂S1
∂τ

+
∂

∂η
(S1u1) +

∂

∂ξ
(S1u1) = 0,

∂π2
∂η

+
∂π2
∂ξ

+
∂u2
∂η
− ∂u2

∂ξ
+
∂u1
∂τ

+
1

2

∂

∂η
(u21) +

1

2

∂

∂ξ
(u21) = 0,

π2 = S2 − 2
∂2S1
∂ξ∂η

+
∂2S1
∂η2

+
∂2S1
∂ξ2

+

(
α− 2

2

)
S2
1 , (9)

O
(
ε3
)

equations:

∂S3
∂η
− ∂S3

∂ξ
+
∂u3
∂η

+
∂u3
∂ξ

+
∂S2
∂τ

+
∂

∂η
(S1u2) +

∂

∂ξ
(S1u2) +

∂

∂η
(u1S2) +

∂

∂ξ
(u1S2)

− dp0
dτ

∂S1
∂ξ
− dq0
dτ

∂S1
∂η

+
∂P0

∂ξ

∂

∂η
(u1 + S1)−

∂P0

∂η

∂

∂ξ
(u1 + S1)−

∂Q0

∂ξ

∂

∂η
(u1 − S1)

+
∂Q0

∂η

∂

∂ξ
(u1 − S1) = 0, (10)

∂π3
∂η

+
∂π3
∂ξ

+
∂u3
∂η
− ∂u3

∂ξ
+
∂u2
∂τ

+
∂

∂η
(u1u2) +

∂

∂ξ
(u1u2)−

dp0
dτ

∂u1
∂ξ
− dq0
dτ

∂u1
∂η

+
∂P0

∂ξ

∂

∂η
(u1 + π1)−

∂P0

∂η

∂

∂ξ
(u1 + π1) +

∂Q0

∂ξ

∂

∂η
(u1 − π1)−

∂Q0

∂η

∂

∂ξ
(u1 − π1) = 0, (11)

π3 =S3 + (α− 2)S1S2 +

(
3− 2α

4

)
S3
1 − 2

∂2S2
∂ξ∂η

+
∂2S2
∂η2

+
∂2S2
∂ξ2

− 2
∂2S1
∂ξ∂τ

+ 2
∂2S1
∂η∂τ

− 1

2
S1

(
∂2S1
∂ξ2

+
∂2S1
∂η2

− 2
∂2S1
∂ξ∂η

)
. (12)



390 TWMS J. APP. ENG. MATH. V.8, N.2, 2018

4. Solution of the field equations

From the solution of the equation set (8) we obtain

u1 = f1(ξ, τ) + g1(η, τ),

S1 = π1 = f1(ξ, τ)− g1(η, τ), (13)

where f1(ξ, τ) and g1(η, τ) are two unknown functions whose governing equations will be
obtained from the higher order perturbation expansion. Introducing (13) into (9) and
then adding and subtracting the resulting equations side by side we obtain

2
∂

∂η
(u2 + S2) +

[
2
∂f1
∂τ

+ (α+ 1)f1
∂f1
∂ξ

+
∂3f1
∂ξ3

]
+ (α− 3)g1

∂g1
∂η
− (α− 3)f1

∂g1
∂η

− (α− 3)
∂f1
∂ξ

g1 −
∂3g1
∂η3

= 0, (14)

2
∂

∂ξ
(u2 − S2)−

[
2
∂g1
∂τ

+ (α+ 1)g1
∂g1
∂η
− ∂3g1
∂η3

]
− (α− 3)f1

∂f1
∂ξ

+ (α− 3)g1
∂f1
∂ξ

+ (α− 3)f1
∂g1
∂η
− ∂3f1

∂ξ3
= 0. (15)

Integrating the equation (14) with respect to η and (15) with respect to ξ we have

(u2 + S2) =− η
[
∂f1
∂τ

+

(
α+ 1

2

)
f1
∂f1
∂ξ

+
1

2

∂3f1
∂ξ3

]
+

1

2

∂2g1
∂η2

+

(
α− 3

2

)
×
[
M(η, τ)

∂f1
∂ξ

+ f1g1 −
g21
2

]
+ 2f2(ξ, τ), (16)

(u2 − S2) =ξ

[
∂g1
∂τ

+

(
α+ 1

2

)
g1
∂g1
∂η
− 1

2

∂3g1
∂η3

]
+

1

2

∂2f1
∂ξ2

+

(
α− 3

2

)
×
[
−N(ξ, τ)

∂g1
∂η
− f1g1 +

f21
2

]
+ 2g2(η, τ), (17)

where f2(ξ, τ) and g2(η, τ) are new unknown functions, M(η, τ) and N(ξ, τ) are defined
by

M(η, τ) =

η∫
g1(η

′
, τ)dη

′
, N(ξ, τ) =

ξ∫
f1(ξ

′
, τ)dξ

′
. (18)

As is seen from equations (16) and (17) the terms proportional to ξ and η cause to
secularity; therefore, the coefficients of them must vanish, which yields

∂f1
∂τ

+

(
α+ 1

2

)
f1
∂f1
∂ξ

+
1

2

∂3f1
∂ξ3

= 0, (19)

∂g1
∂τ

+

(
α+ 1

2

)
g1
∂g1
∂η
− 1

2

∂3g1
∂η3

= 0. (20)

Based on the remarkable statement of Su and Mirie [4], given in the Introduction of the
present work, Xue [15] stated that the terms M(η, τ)∂f1/∂ξ and N(ξ, τ)∂g1/∂η appearing
in equations (16) and (17) do not cause any secularity at this order but it will cause
secularity in the next order equations; therefore, there should be some terms of order ε in
the trajectory functions to eliminate these secularities. As will be shown in the solution
of the next order equations these terms do not cause any secularity. It is that reason, in
the present work we assumed that the order of the trajectory function is ε2 rather than ε.
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Then from the solution of equations (16) and (17) we obtain u2 and S2 as

u2 =f2(ξ, τ) + g2(η, τ) +

(
α− 3

4

)[
M(η, τ)

∂f1
∂ξ
−N(ξ, τ)

∂g1
∂η

+
1

2

(
f21 − g21

)]
+

1

4

(
∂2f1
∂ξ2

+
∂2g1
∂η2

)
,

S2 =f2(ξ, τ)− g2(η, τ) +

(
α− 3

4

)[
M(η, τ)

∂f1
∂ξ

+N(ξ, τ)
∂g1
∂η

+ 2f1g1

−1

2

(
f21 + g21

)]
− 1

4

(
∂2f1
∂ξ2

− ∂2g1
∂η2

)
. (21)

The evolution equations (19) and (20) are the conventional Korteweg-de Vries equations,
which are different from those of Xue [15], who employed the same set of tube-fluid equa-
tions. These evolution equations admit the solitary wave solution of the form

f1 = A sech2 ζ+, ζ+ =

[
(α+ 1)A

12

]1/2(
ξ − (α+ 1)

6
Aτ

)
,

g1 = −B sech2 ζ−, ζ− =

[
(α+ 1)B

12

]1/2(
η +

(α+ 1)

6
Bτ

)
, (22)

where A and B are constant amplitudes of the waves.
For the type of solutions given in (22) the functions M(η, τ) and N(ξ, τ) will be of the

form tanh ζ±. The integral of them leads to secularities as ξ(η)→ ±∞.
Substituting (13) and (21) into the set of equations (10)-(12), then adding and sub-

tracting equations (10) and (11)side by side, we obtain

2
∂

∂η
(u3 + S3) + 2

∂f2
∂τ

+ (α+ 1)
∂

∂ξ
(f1f2) +

∂3f2
∂ξ3

+
(α+ 4)

2
f1
∂3f1
∂ξ3

+
(4α+ 11)

2

× ∂f1
∂ξ

∂2f1
∂ξ2

− 3

8
(α2 − 2α+ 3)f21

∂f1
∂ξ

+
3

4

∂5f1
∂ξ5

− 2
dp0
dτ

∂f1
∂ξ
− (α− 3)2

4

(
∂f1
∂ξ

∂g1
∂η

+
∂f21
∂ξ2

g1

)
M − (α− 3)

(
∂f1
∂ξ

g2 + f1
∂g2
∂η
− ∂

∂η
(g1g2) + f2

∂g1
∂η

)
− ∂3g2
∂η3

− (4α2 − 14α+ 15)

4

∂f1
∂ξ

g21 −
(

(α− 3)
∂f2
∂ξ
− (5α2 − 10α+ 3)

4
f1
∂f1
∂ξ
− (α− 1)

4

×∂
3f1
∂ξ3

)
g1 −

1

2

∂5g1
∂η5

− 4
∂P0

∂η

∂f1
∂ξ
− (α− 3)

4

(
(α− 3)

∂

∂η

(
g1
∂g1
∂η

)
− (α− 3)

∂f1
∂ξ

×∂g1
∂η
− ∂4g1
∂η4

− (α− 3)f1
∂2g1
∂η2

)
N +

(5α2 − 10α+ 3)

8
g21
∂g1
∂η

+
(3α− 3)

4
f1
∂3g1
∂η3

− (7α2 − 22α+ 21)

8

(
2f1g1

∂g1
∂η
− f21

∂g1
∂η

)
− (α− 5)

4

∂2f1
∂ξ2

∂g1
∂η

+
3

2

∂f1
∂ξ

∂2g1
∂η2

+
5

2

∂

∂η

(
g1
∂2g1
∂η2

)
+

(5α+ 9)

8

∂

∂η

[(
∂g1
∂η

)2
]

= 0, (23)

2
∂

∂ξ
(u3 − S3)− 2

∂g2
∂τ
− (α+ 1)

∂

∂η
(g1g2) +

∂3g2
∂η3

− (α+ 4)

2
g1
∂3g1
∂η3

− (4α+ 11)

2
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× ∂g1
∂η

∂2g1
∂η2

− 3

8
(α2 − 2α+ 3)g21

∂g1
∂η

+
3

4

∂5g1
∂η5

+ 2
dq0
dτ

∂g1
∂η
− (α− 3)2

4

(
∂f1
∂ξ

∂g1
∂η

+
∂g21
∂η2

f1

)
N + (α− 3)

(
∂g1
∂η

f2 + g1
∂f2
∂ξ
− ∂

∂ξ
(f1f2) + g2

∂f1
∂ξ

)
− ∂3f2

∂ξ3

− (4α2 − 14α+ 15)

4

∂g1
∂η

f21 +

(
(α− 3)

∂g2
∂η

+
(5α2 − 10α+ 3)

4
g1
∂g1
∂η
− (α− 1)

4

×∂
3g1
∂η3

)
f1 −

1

2

∂5f1
∂ξ5

− 4
∂Q0

∂ξ

∂g1
∂η
− (α− 3)

4

(
(α− 3)

∂

∂ξ

(
f1
∂f1
∂ξ

)
− (α− 3)

∂f1
∂ξ

×∂g1
∂η

+
∂4f1
∂ξ4

− (α− 3)g1
∂2f1
∂ξ2

)
M +

(5α2 − 10α+ 3)

8
f21
∂f1
∂ξ
− (3α− 3)

4
g1
∂3f1
∂ξ3

− (7α2 − 22α+ 21)

8

(
2g1f1

∂f1
∂ξ
− g21

∂f1
∂ξ

)
+

(α− 5)

4

∂2g1
∂η2

∂f1
∂ξ
− 3

2

∂g1
∂η

∂2f1
∂ξ2

− 5

2

∂

∂ξ

(
f1
∂2f1
∂ξ2

)
− (5α+ 9)

8

∂

∂ξ

[(
∂f1
∂ξ

)2
]

= 0. (24)

Integrating (23) with respect to η and (24) with respect to ξ we obtain

2(u3 + S3) + η

(
2
∂f2
∂τ

+ (α+ 1)
∂

∂ξ
(f1f2) +

∂3f2
∂ξ3

+
(α+ 4)

2
f1
∂3f1
∂ξ3

+
(4α+ 11)

2

×∂f1
∂ξ

∂2f1
∂ξ2

− 3

8
(α2 − 2α+ 3)f21

∂f1
∂ξ

+
3

4

∂5f1
∂ξ5

− 2
dp0
dτ

∂f1
∂ξ

)
− (α− 3)2

4

×

∂f1
∂ξ

η∫ (
∂g1
∂η

M

)
dη

′
+
∂f21
∂ξ2

η∫
(g1M)dη

′

− (α− 3)
∂f1
∂ξ

η∫
g2dη

′ − (α− 3)

× (f1g2 − g1g2 + f2g1)−
∂2g2
∂η2

− (4α2 − 14α+ 15)

4

∂f1
∂ξ

η∫
g21dη

′ −
(

(α− 3)
∂f2
∂ξ

−(α− 1)

4

∂3f1
∂ξ3

− (5α2 − 10α+ 3)

4
f1
∂f1
∂ξ

)
M − 1

2

∂4g1
∂η5

− 4P0
∂f1
∂ξ

− (α− 3)

4

(
(α− 3)g1

∂g1
∂η
− ∂3g1
∂η3

− (α− 3)
∂f1
∂ξ

g1 − (α− 3)f1
∂g1
∂η

)
N

+
(5α2 − 10α+ 3)

24
g31 +

(3α− 3)

4
f1
∂2g1
∂η2

− (7α2 − 22α+ 21)

8

(
f1g

2
1 − f21 g1

)
− (α− 5)

4

∂2f1
∂ξ2

g1 +
3

2

∂f1
∂ξ

∂g1
∂η

+
5

2
g1
∂2g1
∂η2

+
(5α+ 9)

8

(
∂g1
∂η

)2

= 2f3(ξ, τ), (25)

2(u3 − S3) + ξ

(
−2

∂g2
∂τ
− (α+ 1)

∂

∂η
(g1g2) +

∂3g2
∂η3

− (α+ 4)

2
g1
∂3g1
∂η3

− (4α+ 11)

2

×∂g1
∂η

∂2g1
∂η2

− 3

8
(α2 − 2α+ 3)g21

∂g1
∂η

+
3

4

∂5g1
∂η5

+ 2
dq0
dτ

∂g1
∂η

)
− (α− 3)2

4

×

∂g1
∂η

ξ∫ (
∂f1
∂ξ

N

)
dξ

′
+
∂g21
∂η2

ξ∫
(f1N) dξ

′

+ (α− 3)
∂g1
∂η

ξ∫
f2dξ

′
+ (α− 3)
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× (g1f2 − f1f2 + g2f1)−
∂2f2
∂ξ2

− (4α2 − 14α+ 15)

4

∂g1
∂η

ξ∫
f21dξ

′
+

(
(α− 3)

∂g2
∂η

−(α− 1)

4

∂3g1
∂η3

+
(5α2 − 10α+ 3)

4
g1
∂g1
∂η

)
N − 1

2

∂4f1
∂ξ4

− 4Q0
∂g1
∂η

− (α− 3)

4

(
(α− 3)f1

∂f1
∂ξ

+
∂3f1
∂ξ3

− (α− 3)f1
∂g1
∂η
− (α− 3)

∂f1
∂ξ

g1

)
M

+
(5α2 − 10α+ 3)

24
f31 −

(3α− 3)

4
g1
∂2f1
∂ξ2

− (7α2 − 22α+ 21)

8

(
f21 g1 − f1g21

)
+

(α− 5)

4

∂2g1
∂η2

f1 −
3

2

∂g1
∂η

∂f1
∂ξ
− 5

2
f1
∂2f1
∂ξ2

− (5α+ 9)

8

(
∂f1
∂ξ

)2

= 2g3(η, τ), (26)

where f3(ξ, τ) and g3(η, τ) are two unknown functions whose evolution equations will be
obtained from the next order equations. In order to remove the secularity caused by the
terms proportional to ξ and η, the coefficient of η in (25) and the coefficient of ξ in (26)
must vanish, which yields

∂f2
∂τ

+
(α+ 1)

2

∂

∂ξ
(f1f2) +

1

2

∂3f2
∂ξ3

=
3

16
(α2 − 2α+ 3)f21

∂f1
∂ξ
− (4α+ 11)

4

∂f1
∂ξ

∂2f1
∂ξ2

− (α+ 4)

4
f1
∂3f1
∂ξ3

− 3

8

∂5f1
∂ξ5

+
dp0
dτ

∂f1
∂ξ

, (27)

∂g2
∂τ

+
(α+ 1)

2

∂

∂η
(g1g2)−

1

2

∂3g2
∂η3

=− 3

16
(α2 − 2α+ 3)g21

∂g1
∂η
− (4α+ 11)

4

∂g1
∂η

∂2g1
∂η2

− (α+ 4)

4
g1
∂3g1
∂η3

+
3

8

∂5g1
∂η5

+
dq0
dτ

∂g1
∂η

. (28)

As is seen from the equations (25) and (26) the other terms in the expression of u3 and
S3 do not cause any secularity of the type

∫
M(η′)dη′ and

∫
N(ξ′)dξ′ for this order, but

it might have secularities in the next order.
Seeking a progressive wave solution for the equations (27) and (28) of the form f2 =

f2(ζ+), g2 = g2(ζ−), one obtains

f2 =
1

24(α+ 1)

[
(5α2 + 11α+ 33)2Af1 − (7α+ 16)3f21

]
,

g2 =
1

24(α+ 1)

[
(5α2 + 11α+ 33)2Bg1 + (7α+ 16)3g21

]
,

p0(τ) =
A2

24
(α+ 1)2τ, q0(τ) = −B

2

24
(α+ 1)2τ. (29)

Here A2(α+ 1)2/24 and −B2(α+ 1)2/24 correspond to the speed correction terms for the
right and left going waves, respectively. By using the above results the following identities
can be obtained for the terms involving f1, N ,

∂2f1
∂ξ2

=
(α+ 1)

6
(2Af1 − 3f21 ),

(
∂f1
∂ξ

)2

=
(α+ 1)

3
(Af21 − f31 ),∫

f21dξ
′

=
N

3
(f1 + 2A) ,

∫
f1Ndξ

′
= −

(
6

α+ 1

)
f1,∫ (

∂f1
∂ξ

N

)
dξ

′
=

2N

3
(f1 −A), (30)
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and also similar identities are valid for the terms involving g1 and M . Then the equations
(25) and (26) can be written in the following form

u3 + S3 =
(7α+ 16)

4(α+ 1)
g31 +

(43α2 + 103α+ 276)

48(α+ 1)
Bg21 +

(7α2 + 15α+ 35)

72
B2g1

+
(12α3 − 37α2 + 9α− 50)

24(α+ 1)
Af1g1 +

(2α3 − 7α2 + 3α− 96)

24(α+ 1)
Bf1g1

+
(4α3 − 11α2 − 3α− 24)

16(α+ 1)
f1g

2
1 −

(14α3 − 41α2 + 3α+ 22)

16(α+ 1)
f21 g1

+

(
(4α3 − 5α2 + α− 98)

24(α+ 1)
A
∂f1
∂ξ
− (α3 + α2 − 9α+ 63)

24(α+ 1)
B
∂f1
∂ξ

−(4α3 + α2 − 11α− 44)

8(α+ 1)
f1
∂f1
∂ξ

+
(4α3 − 11α2 + 3α+ 6)

16(α+ 1)
g1
∂f1
∂ξ

)
M

− (α− 3)

2

(
(α+ 1)

12
B
∂g1
∂η

+
(α− 3)

4

(
f1
∂g1
∂η

+ g1
∂f1
∂ξ

)
+ g1

∂g1
∂η

)
N

− 3

4

∂f1
∂ξ

∂g1
∂η

+ 2P0
∂f1
∂ξ

+ 2f3(ξ, τ), (31)

u3 − S3 =
(7α+ 16)

4(α+ 1)
f31 −

(43α2 + 103α+ 276)

48(α+ 1)
Af21 +

(7α2 + 15α+ 35)

72
A2f1

− (12α3 − 37α2 + 9α− 50)

24(α+ 1)
Bf1g1 −

(2α3 − 7α2 + 3α− 96)

24(α+ 1)
Af1g1

+
(4α3 − 11α2 − 3α− 24)

16(α+ 1)
f21 g1 −

(14α3 − 41α2 + 3α+ 22)

16(α+ 1)
f1g

2
1

+

(
−(4α3 − 5α2 + α− 98)

24(α+ 1)
B
∂g1
∂η

+
(α3 + α2 − 9α+ 63)

24(α+ 1)
A
∂g1
∂η

−(4α3 + α2 − 11α− 44)

8(α+ 1)
g1
∂g1
∂η

+
(4α3 − 11α2 + 3α+ 6)

16(α+ 1)
f1
∂g1
∂η

)
N

+
(α− 3)

2

(
(α+ 1)

12
A
∂f1
∂ξ
− (α− 3)

4

(
f1
∂g1
∂η

+ g1
∂f1
∂ξ

)
− f1

∂f1
∂ξ

)
M

+
3

4

∂f1
∂ξ

∂g1
∂η

+ 2Q0
∂g1
∂η

+ 2g3(η, τ). (32)

As might be seen from equations (31) and (32) these terms appearing in the expressions
of u2 and S2 do not cause any secularity in the solution of u3 and S3. Therefore the
statement by Su and Mirie [4] is incorrect. However as we stated before, some of the
terms appearing in the expressions of u3 and S3 (The equations (31) and (32)) may cause
additional secularity in the expressions of u4 and S4. There appears to be two types of
secularity in the solution of O(ε4) equation. As was seen before, the first type of secularity
results from the terms proportional to ξ and η which will not be studied more. The second

type of secularity occurs from the terms proportional
ξ∫
N(ξ

′
, τ)dξ

′
and

η∫
M(η

′
, τ)dη

′

as ξ(η) → ±∞. Here we shall only consider the parts of O(ε4) equations leading to
η∫
M(η

′
, τ)dη

′
type of secularity. Similar expressions may be valid for

ξ∫
N(ξ

′
, τ)dξ

′
type

of secularity.
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For this purpose we consider the following part of the O(ε4) equation

2
∂

∂η
(u4 + S4) +

∂

∂τ
(u3 + S3) + (α− 2)

∂

∂ξ
(S1S3) +

∂

∂ξ
(u1S3) +

∂

∂ξ
[u3 (u1 + S1)]

+
∂3S3
∂ξ3

+ (α− 2)S2
∂S2
∂ξ

+ u2
∂

∂ξ
(u2 + S2) + S2

∂u2
∂ξ
− dp0

dτ

∂

∂ξ
(u2 + S2)

− (6α− 9)

4

∂

∂ξ

(
S2
1S2
)
− 2

∂3S2
∂ξ2∂τ

− 1

2

∂

∂ξ

(
S1
∂2S2
∂ξ2

+
∂2S1
∂ξ2

S2

)
+

(3α− 4)

2
S3
1

∂S1
∂ξ

+
∂3S1
∂ξ∂τ2

+
1

4

∂

∂ξ

(
S2
1

∂2S1
∂ξ2

)
+

∂

∂ξ

(
S1
∂2S1
∂ξ∂τ

)
+ 2

dp0
dτ

∂3S1
∂ξ3

− dp1
dτ

∂

∂ξ
(u1 + S1) = 0. (33)

A similar expression may be given for 2 ∂
∂ξ (u4−S4) equation. We split (33) into two parts

which contain the variables u3 + S3 and (u2, S2, u3 − S3), respectively. Then, we obtain:

∂

∂τ
(u3 + S3) +

(α+ 1)

4

∂

∂ξ
[(u1 + S1)(u3 + S3)] +

1

2

∂3

∂ξ3
(u3 + S3) =

−(4α3 + α2 − 11α− 44)

8
(α+ 1)

[
7

8
f41 −

7

6
Af31 +

1

3
A2f21

]
M, (34)

(α− 2)S2
∂S2
∂ξ

+ u2
∂

∂ξ
(u2 + S2) + S2

∂u2
∂ξ
− dp0

dτ

∂

∂ξ
(u2 + S2)−

(6α− 9)

4

∂

∂ξ

(
S2
1S2
)

− 2
∂3S2
∂ξ2∂τ

− 1

2

∂

∂ξ

(
S1
∂2S2
∂ξ2

+
∂2S1
∂ξ2

S2

)
+

(3α− 9)

4

∂

∂ξ
(S1S3)−

1

2

∂3

∂ξ3
(u3 − S3)

− (α− 3)

2

∂

∂ξ
[(u1 − S1)S3]−

(α− 3)

4

∂

∂ξ
[(u1 + S1) (u3 − S3)] =

(7α2 − 5α− 48)

8
(α+ 1)

[
7

8
f41 −

7

6
Af31 +

1

3
A2f21

]
M. (35)

As is seen from the last part the integration of equations (34) and (35) with respect to
η leads to secularity. In order to remove the secularity, we should set the coefficient of

the term f1
∂f1
∂ξ M in u3 + S3 equal to − (7α2−5α−48)

8(α+1) . Similar expression may be given

for
ξ∫
N(ξ

′
, τ)dξ

′
type of secularities. In order to remove these secularities the trajectory

functions should have the following form:

P0 =
(2α2 − 5α+ 2)

8
f1(ξ, τ)M(η, τ),

Q0 =
(2α2 − 5α+ 2)

8
g1(η, τ)N(ξ, τ). (36)

To obtain the secularities of type η (or ξ) we use the equation (33) to obtain the governing
equation for f3(ξ, τ). We substitute the field variables into (33) then the terms proportional
to η in this equation cause to secularity. In order to remove secularity, the coefficient of η
in (33) must vanish, that is

∂f3
∂τ

+
(α+ 1)

2

∂

∂ξ
(f1f3) +

1

2

∂3f3
∂ξ3

=
∂S(f1)

∂ξ
(37)
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where S(f1) is defined as follows

S(f1) =
(−341α2 − 1472α− 1536)

256(α+ 1)
f41 +

(
(134α3 + 1471α2 + 4862α+ 5712)

576(α+ 1)
A

−(α+ 1)(α− 3)2

16
B

)
f31 +

(
(23α4 − 100α3 − 479α2 − 1700α− 2073)

576(α+ 1)
A2

+
(α+ 1)(α− 3)2

16
AB

)
f21 −

5(α+ 1)3

432
A3f1 +

dp1
dτ

f1 (38)

Seeking a progressive wave solution for the equation (37) of the form f3 = f3(ζ+), the
speed correction term p1(τ) for right going wave is found to be

p1(τ) =
5(α+ 1)3

432
A3τ. (39)

Similar solution may be given for left going wave and speed correction term may be given
by

q1(τ) = −5(α+ 1)3

432
B3τ. (40)

Thus, for this order, the trajectories of the solitary waves become

ε
1
2 (x− t) = ξ + εp0(τ) + ε2p1(τ) + ε2P0 +O(ε3),

ε
1
2 (x+ t) = η + εq0(τ) + ε2q1(τ) + ε2Q0 +O(ε3). (41)

To obtain the phase shifts after a head-on collision of solitary waves characterized by A
and B are asymptotically far from each other at the initial time (t = −∞), the solitary
wave A is at ξ = 0, η = −∞, and the solitary wave B is at η = 0, ξ = +∞, respectively.
After the collision (t = +∞), the solitary wave B is far to the right of solitary wave A, i.e.,
the solitary wave A is at ξ = 0, η = +∞, and the solitary wave B is at η = 0, ξ = −∞.
Using the equations (22) and (36) one can obtain the corresponding phase shifts ∆A and
∆B as follows:

∆A = ε1/2(x− t) |ξ=0,η=∞ −ε1/2(x− t) |ξ=0,η=−∞

= ε2
(

2α2 − 5α+ 2

8

)
f1(0)

+∞∫
−∞

g1(η
′
)dη

′
= ε2

(
2α2 − 5α+ 2

8

)
A

+∞∫
−∞

g1(η
′
)dη

′

= −ε2
(

2α2 − 5α+ 2

4

)(
12

α+ 1

)1/2

AB1/2, (42)

∆B = ε1/2(x+ t) |η=0,ξ=−∞ −ε1/2(x+ t) |η=0,ξ=∞

= −ε2
(

2α2 − 5α+ 2

8

)
g1(0)

+∞∫
−∞

f1(ξ
′
)dξ

′
= ε2

(
2α2 − 5α+ 2

8

)
B

+∞∫
−∞

f1(ξ
′
)dξ

′

= ε2
(

2α2 − 5α+ 2

4

)(
12

α+ 1

)1/2

A1/2B. (43)

Here, as opposed to the results of previous works on the same subject the phase shifts
depend on the amplitudes of both waves.
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5. Conclusion

Employing the field equations given in [15] and the extended PLK method derived in
[9], we have studied the head-on collision of solitary waves in arteries. Introducing a set
of stretched coordinates that include some unknown functions characterizing the higher
order dispersive effects and the trajectory functions, which are to be determined from
the removal of possible secularities that might occur in the solution. Expanding these
unknown functions and the field variables into power series of the smallness parameter
ε and introducing the resulting expansions into the field equations we obtained the sets
of partial differential equations. By solving these differential equations and imposing the
requirements for the removal of possible secularities we obtained the speed correction terms
and the trajectory functions. The results of our calculation show that both the evolution
equations and the phase shifts resulting from the head-on collision of solitary waves are
quite different from those of Xue [15], who employed the incorrect formulation of Su and
Mirie [4]. As opposed to the result of previous works on the same subject, in the present
work the phase shifts depend on the amplitudes of both colliding waves.

References

[1] Korteweg D. J. and de Vries G., (1895), On the change of form of long waves advancing in a rectangular
channel, and on a new type of long stationary waves, Phil. Mag., 39, pp.422-443.

[2] Gardner C. S., Greene J. M., Kruskal M. D. and Miura R. M., (1967), Method for solving KdV
equation, Phys. Rev. Lett., 19, pp.1095-1097.

[3] Zakharov V. E., Manakov S. V., Novikov S. P., and Pitaievski L. P., (1980), Theory of Soliton: The
Inverse Problem Method, Nauka, Moscow [English translation(Plenium, New York, 1984)].

[4] Su C. H. and Mirie R. M., (1980), On head-on collisions between two solitary waves, J. Fluid Mech.,
98, 3, pp.509-525.

[5] Huang G. and Velarde M.G., (1996), Head-on collision of two concentric cylindrical ion-acoustic
solitary waves, Physical Review E, 53, pp.2988-2991.

[6] Narahara K., Characterization of collision-induced generation of pulses in coupled electrical nonlinear
transmission lines, (2014), Japanese Journal of Applied Physics, 53, 067301.

[7] Demiray H., (2012), Contribution of higher order terms to the nonlinear shallow water waves, TWMS
J. Appl .and Engr. Math., 2, pp.210-218.

[8] El-Tantawy S. A., Moslem W. M.,Sabry R., El-Labany S. K., El-Metwally M. and Schlickeiser R.,
(2013), Nonplanar solitons collision in ultracold plasmas, Physics of Plasmas, 20, 092126.

[9] Ozden A.E. and Demiray H., (2015), Re-visiting the head-on collision problem between two solitary
waves in shallow water, Int. J. Nonlinear Mechanics, 69, pp.66-70.

[10] McDonald D. A., (1974), Blood Flow in Arteries, Second Edition, Edward Arnold, London.
[11] Paquerot J. F. and Lambrakos S. G., (1994), Monovariable representation of blood flow in a large

elastic artery, Phys. Rev. E, 49, pp.3432-3439.
[12] Sakanishi A., Hasegawa M. and Ushiyama Y., (1996), Pressure pulse wave for blood flow in the aorta

from the viewpoint of Toda lattice, Phys. Lett. A, 2219, pp.395-399.
[13] Antar N. and Demiray H., (1999), Weakly nonlinear waves in a prestressed thin elastic tube containing

a viscous fluid, Int. J. Engr. Sci., 37, pp.1859-1876.
[14] Malfliet W. and Ndayirinde I., (1998), Dressed solitary waves in an elastic tube, Physica D, 123,

pp.92-98.
[15] Xue J. K., Head-on collision of blood solitary waves, (2004), Phys. Lett. A, 331, pp.409-413.
[16] Demiray H., (2005), Head-on collision of solitary waves in fluid-filled elastic tubes, Appl. Math. Letters,

18, pp.941-950.
[17] Demiray H., (2009), Head-on collision of nonlinear waves in a fluid of variable viscosity contained in

an elastic tube, Chaos, Solitons and Fractals, 41, pp.1578-1586.
[18] Duan W. S., Wang B. R. and Wein R. J., (1997), Reflection and transmission of nonlinear blood waves

due to arterial branching, Phys. Rev. E, 55, pp.1773-1778.
[19] Noubissie S. and Woafo P., (2003), Dynamics of solitary blood waves in arteries with prosthesis, Phys.

Rev. E, 67, 041911.



398 TWMS J. APP. ENG. MATH. V.8, N.2, 2018

A. Erinc Ozden graduated from the Department of Mathematical Engineering of
Istanbul Technical University in 2002. He received his Ph.D degree in Mathematics
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