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BEST COAPPROXIMATION IN L*(u,X)

J. JAWDAT?, §

ABSTRACT. Let X be a real Banach space and let G be a closed subset of X. The
set G is called coproximinal in X if for each x € X, there exists yo € G such that
lly — yoll < ||z —yl|, for all y € G. In this paper, we study coproximinality of L (u, G)
in L*(u, X), when G is either separable or reflexive coproximinal subspace of X.
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1. INTRODUCTION AND PRELIMINARIES

The theory of best coapproximation in normed linear spaces was developed as a coun-
terpart to the theory of best approximation. It was initially introduced by Franchetti and
Furi in 1972, [2], in order to study some characteristic properties of real Hilbert spaces.
Many researches have been done since then, see [9-12]. Let X be a Banach space and
G a bounded subset of X. For an element x € X, the element yy € G is called a best
coapproximation point of G to z, if

lvo —yll < llz—yll,Vy € G.
Consider the set-valued map Rg : X — 2G defined by

Ra(z) ={yo € G : |lyo —yl| < ||z —y||,Vy € G},

namely, Rg(z) is the set of all best coapproximation points to x from G. Notice that
Rg(x) is closed and bounded for each z, see [10], [9]. G is called coproximinal in X, if
for each x € X, there exists at least one point of best coapproximation to x in G. In
other words, G is coproximinal in X iff R(G) = X, where R(G) = {z € X : Rg(x) # ¢}.
Clearly, G C R(G). If R(G) is dense in X then G is called densely coproximinal in X.
On the other hand, G is called co-Chebyshev in X, if for each = € X, Rg(x) is singelton.
Notice that, see Theorem 2 in [12], if G is convex in X, then Rg(z) is a convex subset of
G, for any x € X such that Rg(x) # ¢. Now, let G be a coproximinal subspace of X and
denote by G the following set

G={reX:|yl<ly—z|. vyea)
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Then, X = G + G, [10]. The set G is sometimes written as ker(Rg) and it is called the
cometric complement of GG, whereas Rg above is called the cometric projection onto G.

Clearly, when G is coproximinal subspace of X then for each z € X, Rg(z) = {yo €
G:x—ype G}

Let X be a Banach space, (T, 3, 1) a o-finite complete measure space and let LP(u, X),
1 < p < 00, be the Banach spaces of all equivalence classes of strongly measurable, Bochner
p-integrable functions on T i.e,

/ 1F(0)[Pdt < oo,
T

Usually, LP(u, X), 1 < p < oo are called Bochner p-integrable function spaces, with norm
defined as follows,

1l =1 /T LF() ey,

Let Loo(u, X) be the Banach space of all equivalence classes of strongly measurable,
X-valued, essentially bounded functions on 7' (i.e bounded except on a set of measure
zero). For f € L*(u, X) the norm of f, namely || f||, is given by

[flloe = ess supier | f (1)
For more on the theory of LP(u, X), 1 < p < oo, see [1] or [7].

The theory of best coapproximation has been studied for LP(u, X), 1 < p < oo, by [3]
and [8], where several properties have been obtained. In [4], some results were generalized
to Kothe Bochner function spaces. In this paper, we will study best coapproximation in
L*(u, X) by elements in L*°(u, G), where G is a closed subspace of X. Main results con-
cerning coproximinality of L®(u, G), when G is either separable or reflexive coproximinal
subspace of X, are presented in section 3.

2. COPROXIMINALITY IN L*(u, X)

Throughout this section, (7, %, 1) is a finite measure space, X is a real Banach space
and G a closed subspace of X. L*(u,X) is the Banach space defined as above. The
folllowing theorem is the first to start with,

Theorem 2.1. For f in L*°(u, X) and g in L*°(u, G) such that g(t) is a best coapprozi-
mation point in G to f(t) in X, a.et €T, then g is a best coapproximation to f.

Proof. Let g(t) be a best coapproximation element in G to f(t) € X, a.e t € T. Then
lg@) —yll < ILf(t) = yll,Vy € G,a.e t € T.

Hence, in particular, for any function h in L>(u, G), we have

lg(t) = h@) < |f(t) = h®)], aet eT.
This implies for all h € L>(u, G),

ess supier [|g(t) — h(t)|| < ess supier || f(t) — h(t)]].

So, we get

lg = hlloo < If =Rl , VR € LZ(n, G).
Hence, g is a best coapproximation to f. O
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On the other hand, consider the following theorem,

Theorem 2.2. Let G be closed subspace of X. If L (u, G) is coproziminal in L (p, X)
then G is coproximinal in X.

Proof. Let € X. Define the function f, as follows: f,(t) = z, a.e t € T. Then, it is
clear that f, € L>(p, X).
Now, from the given there exists w € L*(u, G) such that

lw —=hll o < |Ife = hllo, Yh € L®(u,G).
In particular, for h = f,, where y € G. Hence,
lw=fyll < [lfe=fyllo: VW EG.

= ess supier || f=(t) — [y V)], Yy € G.
= [lz—yll, Yy €G.

So, for some ty in 7', then
[w(to) —yll < llw — fyll <llz—yl, VyeG.

This implies that w(ty) € G is a best coapproximation of x € X, where w € L*(u, G) is a
best coapproximation of the constant function f, € L*(u, X). Hence, G is coproximinal
in X. g

Next, let us consider the set of countably-valued functions which is dense in L*>(u, X).
For a countable collection Ay, ..., Ay, ... of mutually disjoint measurable subsets of T', such
that U2, A; = T and a sequence 21, ..., Zp, .... of elements in X, a function with countable
range (countably-valued function) f : T — X is defined as follows,

f(t) = inXAi(t)7 teT,
=1

where for each 4, x4, is the characteristic function on A;. Clearly, simple functions are
included.

Theorem 2.3. Let G be a coproriminal subspace in X. Then every countably-valued
function in L>°(u, X) has a best coapprorimation in L (u, Q).

(o)
Proof. Let f = > x;xa, be a countably-valued function in L*°(u, X). For each g €

i=1
o0
L>*(u,G) and a given € > 0, there exists a countably-valued function ¢, = > y;x4, in
i=1

L>(u, G), with y; € G, such that |lg — ¢4, < €/2.

Now, for all g € L*(u, G), we can write
1= 9lloe = If = ¢glloe = llpg — 9l
> |If = eglloe —€/2

And since G is coproximinal, let z;, for each 7, be the best coapproximation in G to z; € X.
Thus, for each ¢, we have

lzi — vill x = Iz — will x -
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Hence,

e} o0
ess suprer{)_ |wi — yill x xa,(8)} > ess suprer{_ Iz — vill x xa.(6)}
i=1 i=1

So, by taking g, = i ZiX 4, We get
i=1

1f = @glloe = 190 = Pgllos -

But again write
190 = glloe = 1190 — 9lloe = llg — Pgll

which implies

1f = 9lloe > 1lg0 =9l — €
And since e arbitrary, we get

1f = 9lle = 196 = 9l »
for all g € L>°(u, G). O

Corollary 2.1. Let G be a coproximinal subspace in X. Then L*°(u,G) is densely co-
proziminal in L (p, X).

3. MAIN RESULTS

In this section, we will give two main results concerning coproximinality of L>(u,G)
in L>(u, X) when G is either separable or reflexive coproximinal subspace of the Banach
space X. First, we deal with G being separable. Let us recall, see [6], pp.133, that a
set-valued map on a measure space (T, 3, i), F : T — 2% is said to be weakly measurable
if for any open set U of X, theset {t € T': F/(t) (U # ¢} is measurable (i.e belongs to X).
A measurable selection of F' is a measurable function h : T — X such that h(t) € F(t),
for all t € T. The following Lemma, known as Kuratowski-Ryll-Nardzewski Measurable
Selection Theorem [5], can also be found in [6].

Lemma 3.1. Let F : T — 2% be a weakly measurable set-valued map carrying each t € T
to a nonempty closed and bounded subset of X. If X is a separable Banach space then F
has a measurable selection.

Now, let G be a coproximinal subspace in the Banach space X and G the cometric
complement of G in X. For each f € L>(u, X), define the map ¢ : T — 2C as

i) ={zn€G: f(t) —z € G}, teT.

Then 7 is a set-valued map, taking each element ¢ € T" into a subset of G, precisely the
set of best coapproximation points to f(t) : Ra(f(%)).

Theorem 3.1. Let G be a separable subspace of X such that wy as defined above is weakly
measurable. Then L (u, Q) is coproximinal in L (u, X) if G is coproximinal in X.

Proof. Suppose that G is coproximinal in X and let f be in L>(u, X). Let mp : T' — 2C
be the set-valued map defined as above. Hence, we can write,
7(t) = {2 € Gt |z — yll < () —yll, for all y € G}.

Hence, for each t € T', 7¢(t) is closed, bounded and nonempty subset in G, since it takes
t € T to the set of best coapproximation points in G to f(t). The assumption that the
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map 7y is weakly measurable implies (by Lemma 3.1) that it has a measurable selection,
say w : T'— G such that w(t) € m¢(t), a.e t € T. But since G separable, w is strongly
measurable by Lemma 10.3 in [6]. Hence the result follows, from Theorem 2.1, if we show
that w € L*°(u, G). Indeed, since w : T'— G satisfies

[w(t) —yll < 1f(t) —yll, forall y € G.

So, in particular
lw@ < If@), aeteT,

which implies ||w||, < || flo - Hence, w € L>®(u, G). O

For the next main result, Theorem 3.2, we need the following Lemma which has been
proved in [4], (see Theorem 7 in [4])

Lemma 3.2. Let (I, 1) be a finite measure space, G be a separable coproximinal subspace
of X and f : I — X be measurable function. Then there is a measurable functiong: I — G
such that g(t) is a point of coapproximation to f(t) in G, a.et € I.

Theorem 3.2. Let G be a seperable subspace of X. G is coproziminal in X iff L*°(u, Q)
is coproziminal in L>°(u, X).

Proof. Suppose that G is separable and coproximinal in X and let f € L*°(u, X). Lemma
3.2 above guarantees that there exists a measurable function g defined on T with values
in G (hence g is strongly measurable since G separable) such that g(t) is a point of best
coapproximation to f(t), a.e t € T. Thus, we have f(t) — g(t) € G, a.e t € T, which
implies that

lyll < lly = (F(&) =g < 17®) = g(t) +yll, Vy € G.
In particular, taking y = g(t), we get a.e t € T,

lg@®I < 1) —g(t) +g@) = I/ @) -
Hence, g € L>®(u, G) and g(t) is a best coapproximation point to f(t). It follows from

Theorem 2.1 that g is a point of best coapproximation to f in L*®(u,G). The other
direction follows from Theorem 2.2. O

In the remaining part of this section, we will deal with coproximinality of L>°(u,G) in
L>°(p, X), when G is reflexive coproximinal subspace in X. We assume that (7, ) is a
finite measure space.

Theorem 3.3. If L'(u, G) is coproziminal in L'(u, X), then L>®(u, G) is coproziminal
in L>®(p, X).
Proof. Let f € L*®(u,X). Since the measure space (7T, ) is finite then f € L'(u, X).
Hence, by the given there exists go € L'(u, G) such that

g = glly < IIf = glly, for all g € L' (n, G).
By Lemma 2.2 in [3], we have

19,(®) =g < f (&) =9I, p-aeteT.

Hence, in particular, for all g(t) = w(t) € G, where w € L*(u, G). But, since 0 € G, then
lgo @) < N1 f(@)l, p -a.e t € T. This implies ||g, ||, < ||f]lo- Hence, go € L>(p, G).
Now,

190 (@) —w@| < [[f(t) —w®Il, p-aeteT,
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which implies ||g, — w|,, < [|f —wl, ,Yw € L>(u, G). O

Theorem 3.4. Let G be a reflexive coproximinal subspace of X. Then L*(u,G) is co-
proziminal in L (p, X).

Proof. Let G be a reflexive coproximinal subspace in X. It has been proved in [3] (see
Theorem 3.6 in [3]) that L'(u,G) is coproximinal in L!(u, X). Hence the result follows
from Theorem 3.3. g
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