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THE BOCHNER VANISHING THEOREMS ON THE CONFORMAL

KILLING VECTOR FIELDS

S. EKER1, §

Abstract. In this paper, the result of the Bochner vanishing theorems, indicating the
conditions that every conformal killing vector fields is parallel and there is no nontrivial
Conformal Killing vector field, are satisfied under two different modificated Ricci tensors.
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1. Inroduction

In the 1940s, S. Bochner invented a method to obtain vanishing theorems for some
topological and geometric invariants (e.g. Betti number, the dimension of the vector
space of Killing vector fields) on a closed compact Riemannian manifold without boundary,
under the assumption of the Ricci curvature [2]. In 1953 K. Kodaira used this method
to prove the vanishing theorem for harmonic forms with values in a holomorphic vector
bundle [6]. Subsequently, the Bochner technique has been extended, on the one hand, to
spinor fields and harmonic maps and, on the other, to harmonic functions and harmonic
maps on noncompact manifolds. However, Lichnerowicz [8], Mogi [10], Tomogana [11]
and Yano [15] have applied this technique to harmonic and Killing tensor fields on the
complex manifolds, complete Riemannian manifolds, and Lorentzian manifolds. Another
application of this technique is to obtain a lower bound for the first positive eigenvalue of
the Laplace operator, under the modified Ricci curvature assumptions [1, 14, 9, 12, 15]. In
this paper, the Bochner vanishing theorem for Conformal Killing vector fields are mainly
handled.

This article consists of two parts. In section 2, we begin with a section concerning
some basic facts about Riemannian geometry. In the following section, two modified Ricci
curvature are construct. The first of this is built with the help of the Hessian and Laplacian
operator depending on the positive function f ∈ C∞(M,R). Accordingly, it is shown
that Bochner’s vanishing theory for the Conformal Killing vector field was provided using
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the assumption under the modified Ricci curvature constructed in this way. Moreover,
under this assumption, assuming that the function f is constant, the assumption Ric ≤ 0
provides the Bochner vanishing theorem. Also, it has been proven that Bochner vanishing
theorem has been provided under the assumption of a modified Ricci tensor constructed
with the constant real number κ and the divergence of the conformal killing vector field Z.
Fianlly, it has been proven that there are no nontrivial Conformal Killing vector field under
two different modified Ricci tensors at any point of the compact, oriented Rieamannian
manifolds (M, g).

2. Some Preliminaries

On an n dimensional smooth manifold M , a symmetric and positive definite (0, 2)−type
tensor field

g : χ(M)× χ(M) −→ C∞(M,R)

defines an inner product for any p ∈M as follows:

gp : TpM × TpM −→ R.
Here g is called Riemannian metric and the pair (M, g) is called Riemannian manifold.
According to the Riemannian metric g, the definitions of gradient, Hessian and Laplacian
are given as follows, respectively.

Definition 2.1. Gradient is an operator

∇ : C∞(M,R) −→ χ(M)
f 7−→ ∇f

which makes g(∇f,X) = X(f), ∀X ∈ χ(M).

Definition 2.2. Hessian is a (0, 2)−type tensor field which is detoned by Hessf and
defined as follows

Hessf : χ(M)× χ(M) −→ C∞(M,R),
(X,Y ) 7−→ Hessf(X,Y ) := g

(
∇X∇f, Y

)
where X,Y ∈ χ(M). Another definition of hessian is given by

Hessf(X,Y ) := g
(
hessf(X), Y

)
where hessf = ∇∇f : χ(M)× χ(M)∗ −→ C∞(M,R).

With respect to the hessf , the definition of the Laplacian is

∆ : C∞(M,R) −→ C∞(M,R)
f 7−→ ∆(f) := tr(hessf).

Definition 2.3. Levi−Civita covariant differential of any vector field X is a (1, 1)−type
tensor field denoted by ∇X and defined as

∇X : χ(M) −→ χ(M)
Y 7−→ ∇X(Y ) := ∇YX.

In the following, definitions of the inner product of (p, q)−type tensor fields, divergence
of any vector field and Ricci curvature are given, respectively. Let A,B be (p, q)−type
tensor fields. Then the inner product of these tensor fields in any local coordinate system
is denoted by < A,B > and defined as folows:

< A,B > = gi1j1 ...gipjpgk1l1 ...gkqlqA
k1...kq
i1...ip

B
l1...lq
j1...jp

where gij = (gij)
−1.
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Definition 2.4. A Ricci tensor is a (0, 2)−type tensor field which is defined as follows:

Ric : χ(M)× χ(M) → C∞(M,R)
(V,W ) 7→ Ric(V,W ) = gµνg(R(V, ∂µ)∂ν ,W )

where R : χ(M)× χ(M)χ(M) −→ χ(M) is the (0, 3)−type Riemann curvature.

In the following, the concept of Killing vector fields and Conformal Killing vector fields
are introduced, and some formula is given by using Bochner’s technique with respect to
the Killing vector fields and Conformal Killing vector fieds. Then under the assumptions
of modificated Ricci curvature, we study Bochner’s vanishing theorems.

3. Conformal Killing Vector Fields

Let (M, g) be an n−dimensional Riemannian manifold. Then a Conformal Killing vector
field Z is defined as follows:

LZg = f.g

(1)

where LZg is the Lie derivative of the Riemannian metric g with respect to Z ∈ χ(M) and
the function f = 2

ndiv(Z) ∈ C∞(M,R) is the potential function of the Conformal Killing
vector field Z ∈ χ(M) [1, 4]. Moreover, LZg is the flow of the Conformal Killing vector
field Z which consists of the conformal transformation of the Riemannian manifold (M, g)
and the flow of the Conformal Killing vector fields preserves the conformal structure of
the manifold [3, 5, 15].

Also Conformal Killing vector fields are studied with the Bochner’s technique in Rie-
mannian geometry. This technique consist of the vanishing of the Killing vector fields and
Conformal Killing vector fields under the assumption of the modified Ricci tensor. On the
Riemannian manifold (M, g) a typical example of this technique is given below:

div(∇XX) = Ric(X,X)+ < ∇X, (∇X)∗ > (2)

where ∇X is the covariant derivative of Killing vector field X, and (∇X)∗ = −∇X is the
anti-selfadjoint of ∇X [13]. Another interesting example is the Conformal Killing vector
field Z which is as follows:

div(∇ZZ) = Ric(Z,Z) + Zdiv(Z) +
2

n

(
div(Z)

)2− < ∇Z,∇Z > (3)

Theorem 3.1. Let (M, g) be a compact, oriented Riemannian manifold and the following
assumption is satisfied

Ric+
1

n+ 2

(
n− 2

f
Hess(f) +

n

f
(∆f)g

)
≤ 0, (4)

where n ≥ 2 and f ∈ C∞(M,R+). Then every Conformal Killing vector field is parallel.
Furthermore, if (

Ric+
1

n+ 2

(n− 2

f
Hess(f) +

n

f
(∆f)g

))
(p) < 0 (5)

at the point p ∈ M which is giving minimum value of f ∈ C∞(M,R), then there is no
nontrivial Conformal Killing vector field.
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Proof of Theorem 3.1. Let us construct the following vector field denoted by W ,

W = f∇ZZ +
(n− 2

n+ 2

)
g(∇f, Z)Z +

( n

n+ 2

)
g(Z,Z)∇f − fdiv(Z)Z, (6)

where Z is a Conformal Killing vector field. Taking divergence of the equation (6), one
gets

div (W ) = fdiv(∇ZZ) + g(∇ZZ,∇ f) +
(n− 2

n + 2

)
g(∇ f,Z)div(Z)

+
(n− 2

n+ 2

)
g(∇Z∇f, Z) +

(n− 2

n+ 2

)
g(∇f,∇ZZ) +

( n

n+ 2

)
(∆f)g(Z,Z)

+
( 2n

n+ 2

)
g(∇∇fZ,Z)− f(div(Z))2 − fZ(div(Z))

−div(Z)g(Z,∇f). (7)

A Conformal Killing vector field satisfies the equation

g(∇V Z,W ) + g(∇WZ, V ) =
( 2

n

)
div(Z)g(V,W) (8)

for all vector fields V,W . Thus, the term g(∇∇fZ,Z) can be written as

g(∇∇fZ,Z) = −g(∇ZZ,∇f) +
( 2

n

)
div(Z)g(∇ f,Z). (9)

By using (3) and (9) in (7), one has

div (W ) =

(
Ric(Z,Z) +

1

n+ 2

(n− 2

f
Hess(f)(Z,Z) +

n

f
(∆f)g(Z,Z)

)
− < ∇Z,∇Z > +

( 2

n
− 1
)

(div(Z))2

)
f. (10)

Integrating (10), one has

0 =

∫
M

(
Ric(Z,Z) +

1

n+ 2

(n− 2

f
Hess(f)(Z,Z) +

n

f
(∆f)g(Z,Z)

)
− < ∇Z,∇Z > +

( 2

n
− 1
)

(div(Z))2

)
f dvol. (11)

Using the assumption (4) given in Theorem 1 and ( 2
n − 1)(divZ)2)f ≤ 0 in the integral

expression (11) we get ∫
M

(
〈∇Z,∇Z〉f

)
dvol ≤ 0. (12)

On the other hand since 〈∇Z,∇Z〉 ≥ 0 and f > 0, we get

∫
M

(
〈∇Z,∇Z〉f

)
dvol ≥ 0. (13)

According to (12)and (13), 〈∇Z,∇Z〉 is vanished. This means ∇Z = 0.
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Proof of Theorem 3.1. Under the assumption (4) we obtained that every Conformal
Killing vector field is parallel. Since this result is satisfied under the assumption (5) we
get ∇Z = 0. With the aid of ∇Z = 0 we obtain Ric(Z,Z) = 0. Then we have(( 1

n+ 2

)(n− 2

f
Hess(f) +

n

f
(∆f)g

))
(p) < 0 (14)

at the point p ∈M which gives the minimum value of f . On the other hand, at this point
(∆f)(p) ≥ 0 and (Hess(f))p ≥ 0 which means,(( 1

n+ 2

)(n− 2

f
Hess(f) +

n

f
(∆f)g

))
(p) > 0. (15)

Therefore, (15) contradicts with (5). Hence, there is no nontrivial Conformal Killing vector
field.

In the following by using different assumption the same results are obtained.

Theorem 3.2. Let (M, g) be n−dimensional compact, oriented Riemannian manifold and
satisfies

Ric+ k
( 2

n
+ 1
)

div(Z)g ≤ 0, (16)

where n ≥ 2, Z is the Conformal Killing vector field and k is a constant. Then every
Conformal Killing vector field is parallel. Furthermore, if there is a negative constant
C < 0 satisfying the following inequality

Ric+ k
( 2

n
+ 1
)

div(Z)g ≤ C, (17)

then there is no nontrivial Conformal Killing vector field.

Proof of Theorem 3.2. Let the vector field W be given as follows

W = ∇ZZ + kg(Z,Z)Z − div(Z)Z, (18)

where Z is a Conformal Killing vector field. The divergence of W is first determined as

div (W ) = div(∇ZZ) + kg(Z,Z)div(Z) + 2kg(∇ZZ,Z)−
(
div(Z)

)2
−Zdiv(Z)). (19)

To simplify this equation, it is used to Conformal Killing vector field Z satisfiying the
equation

LZg = fg ⇔ g(∇V Z,W ) + g(∇WZ, V ) = 2
div(Z)

n
g(V,W ) (20)

for all vector fields V,W . Thus, the term g(∇ZZ,Z) can be written as

g(∇ZZ,Z) + g(∇ZZ,Z) = 2
div(Z)

n
g(Z,Z)

2g(∇ZZ,Z) = 2
div(Z)

n
g(Z,Z). (21)

Combining (21) with (19), one gets

div (W ) = div(∇ZZ) + kg(Z,Z)div(Z) +
(2k

n

)
div(Z)g(Z,Z)

−(div(Z))2 − Z(div(Z)). (22)
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Inserting (3) into (22), we get

div (W ) = Ric(Z,Z) +
( 2

n
− 1
)

(div(Z))2 − 〈∇Z,∇Z〉

+
(
k +

2k

n

)
g(Z,Z)div(Z). (23)

Integrating both sides of (22), we obtain

0 =

∫
M

(
Ric(Z,Z) +

( 2

n
− 1
)

(div(Z))2 − 〈∇Z,∇Z〉

+
(
k +

2k

n

)
g(Z,Z)div(Z)

)
dvol. (24)

Using the assumption (16) given in Theorem 2 and
(

2
n − 1

)
(div(Z))2 ≤ 0 in the integral

expression (24 we get ∫
M

(
〈∇Z,∇Z〉u

)
dvol. ≤ 0 (25)

On the other hand, since 〈∇Z,∇Z〉 ≥ 0,
∫
M < ∇Z,∇Z > dvol ≥ 0. Then 〈∇Z,∇Z〉 = 0

iff ∇Z = 0.

Proof of Theorem 3.2. Let us consider integral expression of (19) which is given in (24).
By using the assumption (17) given in Theorem 2.2 in the integral expression (24) we get

0 ≤
∫
M

(
Cg(Z,Z) +

(2− n
n

)
(div(Z))2 − 〈∇Z,∇Z〉

)
dvol (26)

On the other hand, Since

Cg(Z,Z) +
(2− n

n

)
(div(Z))2 − 〈∇Z,∇Z〉 ≤ 0, (27)

0 ≥
∫
M

(
Cg(Z,Z) +

(2− n
n

)
(div(Z))2 − 〈∇Z,∇Z〉

)
dvol. (28)

Thus we have

Cg(Z,Z) +
(2− n

n

)
(div(Z))2 − 〈∇Z,∇Z〉 = 0 (29)

which means Cg(Z,Z) = 0,
(
2−n
n

)
(div(Z))2 ≤ 0 and 〈∇Z,∇Z〉 = 0. Since C negative,

we obtain get g(Z,Z) = iff Z = 0 Hence, there is no nontrivial Conformal Killing vector
field.
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