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A DYNAMICAL ANALYSIS OF THE VIRUS REPLICATION

EPIDEMIC MODEL

I. KUSBEYZI AYBAR1, §

Abstract. In this article, the stability and the computational algebraic properties of
a virus replication epidemic model is investigated. The model is represented by a three
dimensional dynamical system with six parameters. The conditions for the existence
of Hopf bifurcation in the system are given. Then, the model with the Beddington-
DeAngelis functional response instead of the original nonlinear response function has
been studied in order to understand the effect of the Beddington-DeAngelis functional
response on the qualitative properties of the system. The stability of the systems at the
singular points is investigated and the conditions for the systems to have the analytic
first integrals and Hopf bifurcation are given. Finally, the results are illustrated by giving
numerical examples.

Keywords: epidemic model, stability, analytic first integral, algebraic invariant, Hopf
bifurcation.

AMS Subject Classification: 37G10, 65P30, 13A50

1. Introduction

An interesting epidemic model for the spread of disease is the Susceptible-Infected-
Recovered (SIR) model which models the interaction between the susceptible (S) popu-
lation which are susceptible to the virus, the infected (I) population which are infected
by the virus and are infectious and the recovered (R) population which are recovered and
gained immunity. In 1927, Kermack and McKendrick proposed a model to predict the
number of people infected by a contagious illness, i.e. plague in a closed population over
time in London during 1665-1666 and in Bombay in 1906 and another contagious illness,i.e.
cholera in London 1865. This model stands as one of the first implementations of the SIR
model and is referred to as the Kermack-McKendrick model[1].

Evolutionary relations between the parameters of the SIR model were investigated by
Anderson and May by developing the models and fitting data[2, 3]. The periodicity and
the stability properties in epidomiological models were studied by Hethcote et.al.[4, 5].
Smith showed that a period two bifurcation occurs for the SIR model when the contact
rate parameter exceeds a threshold value[6]. In 1994, Kuznetsov and Piccardi studied the
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bifurcations of the periodic solutions of the SIR model with parameter portrait[7]. The
stability and bifurcation properties of the endemic equilibria of a generalized SIR model
were studied by Huang et.al.[8]. of In 1998, pulse vaccination was studied as an application
of the SIR model and shown that the infected population converges to zero at a stable
equilibrium point[9]. Lyapunov and global stability properties of the SIR model and its
generalizations were investigated in 2002[10].

The SIR model and its generalizations have been investigated with delay[11, 12, 13,
14, 15, 16] or without delay[17, 18, 19, 20]. Beretta and Takeuchi studied the stability
properties of an SIR epidemic model with time delays when the present force of infection
depends on the number of the past infectives[21]. In this work they have shown that a
disease free equilibrium state exists if there is no endemic equilibrium and if it exists, it is
stable. In a more recent work, Ma et.al. gave the length of the time delay provided that
the endemic equilibrium is global asymptotically stable by using the method by Freedman
et.al.[22] to obtain the eventual lower bound[23]. Xu et.al. proposed a SIR epidemic model
with nonlinear incidence and time delay and partially obtained the global stability of the
endemic equilibrium for some given case[24]. Later, McCluskey enhanced this analysis to
fully determine the global asymptotically stability of the endemic equilibrium whenever it
exists[25]. Sun et. al. investigated the Hopf bifurcation for a virus infection model with
an immune delay and two intracellular delays[26].

The SIR model is given by the following system[1]

dS

dt
=− βIS

N
,

dI

dt
=
βIS

N
− γI,

dR

dt
=γI

(1)

where S, I and R denote the numbers of the susceptible, the infected and the recovered
population at time t, respectively. The parameter β denotes the infection rate and γ
denotes the recovery rate. The parameters are assumed to be nonnegative. In the original
SIR model no birth or death, i.e. no addition or removal of nodes from the population
are assumed. However in real life, when the virus is fatal the node can not gain immunity
and dies. Therefore, the node does not become susceptible again and has to be removed
from the population. For this reason, the generalizations of the SIR model representing
more realistic applications have to be taken into consideration.

In 1996, Nowak and Bangham presented a general framework to find the relationship
between the immune responses, the abundance of the virus and the virus diversity for a
generalized epidemic model of persistent viruses[27]. In this work they have proposed a
generalized epidemic model to show the interaction between a replicating virus and the
host cells. The model contains three differential equations representing susceptible cells,
infected cells and free virus particles. Here, free virus particles are replicated by the
susceptible cells. The model is often known to represent the dynamics of host-parasite
interactions of the persistent viruses such as HIV, HBV, etc. They have presented the
stability of the equilibria of the model. However, they have not performed a Hopf bi-
furcation analysis which often arise in population models and describe many important
characteristics of the biological systems. In this work, Hopf bifurcation analysis for the
model with the help of a new approach involving algebraic invariants are performed. Also,
the model with the Beddington-DeAngelis functional response is investigated. This func-
tional response was introduced by Beddington[28] and DeAngelis[29] independently to



208 TWMS J. APP. ENG. MATH. V.9, N.2, 2019

model parasite-host interactions in predator-prey systems. The Beddington-DeAngelis
functional response presents a more realistic consumption of predator over prey. Hence,
it is interesting to study the Hopf bifurcation properties of the virus replication epidemic
model with the Beddington-DeAngelis functional response.

In section 1, results on the stability of the equilibria and Hopf bifurcation analysis for
the epidemic model with virus replication are presented and results are illustrated by
giving a numerical example. In section 2, the same analyses is performed by replacing
the simple nonlinear functional response with the Beddington-DeAngelis type nonlinear
functional response in the model. We present our findings in comparison with the classic
virus replication model.

2. The virus replication epidemic model

The epidemic model containing replication of the virus is given as[30, 31, 27]

dx

dt
=N − ax− bxz

dy

dt
=bxz − cy

dz

dt
=dy − ez.

(2)

Here, N is the constant population and a is the death rate of the uninfected population,
b is the infection rate, c is the death rate of the infected population, d is the production
rate and e is the decline rate of the recovered population which contains the free virus.
All parameters are assumed to be positive to represent physical values.

Theorem 2.1. System (2) has at least one stable equilibrium.

Proof. The equilibria of system (2) are E1(
N
a , 0, 0) and E2(

ce
bd ,

bdN−ace
bcd , bdN−acebce ) and the

Jacobian matrix is  −a− bz 0 −bx
bz −c bx
0 d −e

 .

The eigenvalues of the Jacobian matrix at E1 are −a and − c+e
2 ±

√
a(4bdN+a(c−e)2)

2a .
Hence, E1 is a stable equilibrium point.

Since we are not able to calculate the eigenvalues of the Jacobian at the equilibrium E2

by linear stability analysis, the Routh-Hurwitz criterion[32] is applied. The characteristic
polynomial of the Jacobian matrix at E2 is

λ3 +Aλ2 +Bλ+ C = 0

where

A =
bdN

ce
+ c+ e,

B =
bdN(c+ e)

ce
,

C = bdN − ace.
We conclude that if N > ace

bd , then E2 is also a stable equilibrium point. �

Now we look for the algebraic invariants and possible existence of Hopf bifurcation on
the invariant planes of system (2)[33]. We reduce the flow on the invariant plane since
the computations are to heavy and we need to impose some conditions on parameters
to perform further qualitative analysis of the system. Instead of performing numerical
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analysis, i.e. choosing some parameters randomly, we look for conditions when the system
has simpler geometric structure-admits an invariant surface or first integral and then
study the obtained subsystem in more detail. Many systems with complex behavior such
as a chemical reaction system[34], a two prey-one predator system[35], the May-Leonard
model[36] and a gene model[37] have been investigated with the help of the method of
algebraic invariants.

Remark 2.1. In system (2) Hopf bifurcation occurs at E1 if c = −e and 4bdN+a(c−e)2 <
0. However, at E2 we can not find eigenvalues. Hence, it is possible to study Hopf
bifurcation for the reduced system on the invariant plane, to find Hopf bifurcation for the
three dimensional system.

We use the following approach to obtain the conditions in Theorem 2.3. In similar, we
also obtain the conditions for the existence of the first integral of system (2) which are
listed in Theorem 2.4. Let

f1(x1, ..., xn) = 0, ..., fk(x1, ..., .xn) = 0 (A)

be a polynomial system and let I = 〈f1, ..., fk〉 ⊂ k[x1, ..., xn] be the corresponding with
the implicit ordering of the variables x1 > ... > xn.

Definition 2.1. Let I be an ideal in k[x1, ..., xn] and fix m ∈ {0, ..., n − 1}. The m-th
elimination ideal of I is the ideal Im = I ∩ k[xm+1, ..., xn].

To eliminate x1, ..., xm(0 ≤ m < n) from system (A) one can use the following theorem
(see [33] for the proof).

Theorem 2.2. (Elimination Theorem). Fix the lexicographic term order on the ring
k[x1, ..., xn] with x1 > x2 > ... > xn and let G be a Groebner basis for an ideal I of
k[x1, ..., xn] with respect to this order. Then for every m, 0 ≤ m ≤ n − 1, the set Gm :=
G ∩ k[xm+1, ..., xn] is a Groebner basis for the m-th elimination ideal Im.

Using the Elimination Theorem we can determine the invariant algebraic surfaces of
the form

L = a0 + a1x+ a2y + a3z + a4xy + a5xz + a6yz (3)

of system (2).
Consider the system

ẋ = P (x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z). (4)

Let

D :=
∂

∂x
P (x, y, z) +

∂

∂y
Q(x, y, z) +

∂

∂z
R(x, y, z)

be the vector field associated to (4) and let L be a polynomial in the variables x, y, z. The
polynomial L defines an invariant algebraic surface L = 0 of system (4) if

DL = LK

for some polynomial K(x, y, z). The polynomial K is called the cofactor of L and has
degree at most n − 1, if the maximal degree of the polynomials P , Q and R is n. Since
the polynomials on the right hand side of system (2) are of degree at most 2 we look for
the cofactors of the form K = b0 + b1x+ b2y + b3z and the invariant algebraic surfaces of
the form (3).

We perform all the computations in the computer algebra systems MATHEMATICA
and SINGULAR[38].

In the next theorem we list the cases when system (2) has at least one invariant algebraic
surface of degree one or two.
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Theorem 2.3. System (2) has an invariant surface of degree one or two if one of the
following conditions is satisfied.

i. b = 0
ii. a− c = 0

iii. a− e = 0
iv. d = a± e

2 = c± e
2 = 0

v. d = a± 2e = c± 2e = 0
vi. d = a± e = c± e = 0

vii. d = e = 0

Proof. If b = 0, system (2) has the invariant plane l1 = 1− a
N x with the cofactor −a.

If a = c, system (2) has the invariant plane l2 = 1− c
N x−

c
N y with the cofactor −c.

If a = e, system (2) has the invariant plane l3 = 1− e
N x−

e
N y+ e(e−c)

dN z with the cofactor
−e.

If d = a± e
2 = c± e

2 = 0, the invariant plane of system (2) is l4 = 1± e
2N x±

e
2N y with

the cofactor − e
2 .

If d = c± 2e = a± 2e = 0, the invariant plane of system(2) is l5 = 1± 2e
β x±

2e
β y with

the cofactor 2e.
If d = 0 and a = c = ∓e, system (2) has the invariant plane l6 = 1 ± e

N x ±
e
N y with

the cofactor e. Additionally system (2) has the invariant surface l7 = 1 − b
N xz with the

cofactor −bz if d = 0 and a = c = −e.
If d = e = 0, system (2) has the invariant surface l8 = 1− a

N x−
b
N xz with the cofactor

−c− e. �

Remark 2.2. Squares of the invariant planes are invariant surfaces with the cofactors
which are two times of the cofactors of those invariant planes. That is, if l1 = 1− a

N x is

an invariant plane of system (2) for b = 0 with the cofactor −a, then l′1 = (1− a
N x)2 is a

trivial invariant surface of system (2) with the cofactor −2a.
Moreover, multiples of the invariant planes are invariant surfaces. For example, another

trivial invariant surface of system (2) is l′23 = 1− 2bd
ce x−

bd(c+e)2

2c2e2
y − b(c2−e2)

2c2e
z + b2d2

c2e2
x2 +

b2d2

c2e2
y2 + 2b2d2

c2e2
xy+ b2d(c−e)

c2e2
xz+ b2d(c−e)

c2e2
yz with the cofactor −c− e when Nbd− c

2(c+ e) =

a− c+e
2 = 0 is satisfied, which is a combination of the invariant planes l2 and l3.

Theorem 2.4. System (2) has a first integral if one of the following conditions is satisfied.

i. b = c = 0
ii. b = e = 0

iii. d = e = 0
iv. b = a+ c = 0
v. b = a+ e = 0

vi. b = c+ e = 0
vii. d = a+ e = c+ e = 0

Proof. System has the first integrals Ψ1 = 1 + y and Ψ2 = 1 + y + y2, if b = c = 0.
If b = e = 0, system (2) has the first integrals Ψ1 = 1 + y + c

dz and Ψ2 = 1 + y + c
dz +

yz + d
2cy

2 + c
2dz

2.

If d = e = 0, system (2) has the first integrals Ψ1 = 1 + z and Ψ2 = 1 + z + z2. If
additionally c = N = 0 is satisfied, system (2) has the additional integral Ψ3 = 1 + a

b y +
xz + yz.

If b = 0 and a = −c, the first integral of system (2) is Ψ1 = 1 + y + c
N xy.

If b = 0 and a = −e, the first integral of system (2) is Ψ1 = 1+N
e y+N(c−e)

de z+xy+ c−e
d xz.
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If b = 0 and c = −e, system (2) has the first integral Ψ1 = 1 + yz +− d
2ey

2.

If d = 0 and a = c = −e, system (2) has the first integral Ψ1 = 1 + N
e z + xz + yz. �

Theorem 2.5. System (2) has stable Hopf bifurcation, if b > 0, c > 0, d < 0 and e < −c.

Proof. We will look for Hopf bifurcation on the invariant plane of system (2). For this, we

choose the invariant plane l3 = 1− e
N x−

e
N y+ e(e−c)

dN z which exists when a = e. By using
the transformation

x =
N

e
+X − Y − c

d
Z +

e

d
Z, y = Y, z = Z

we rewrite system (2) as

dX

dt
=− eX,

dY

dt
=
be(e− c)Z2 + bdeXZ − bdeY Z − cdeY + bdNZ

de
,

dZ

dt
=dY − eZ.

(5)

According to the equilibria of system (5), there exists a possibility for a stable Hopf

bifurcation to occur at the nontrivial equilibrium point (0, bdN−ce
2

bcd , bdN−ce
2

bce ). First, we
move system (5) to this equilibrium point to have system

dX

dt
=− eX,

dY

dt
=

1

cde
(bce(e− c)Z2 + bcdeXZ − bcdeY Z + (bd2N − cde2)X

+ (cde2 − c2de− bd2N)Y + (2c2e2 − ce3 − bcdN + bdeN)Z),

dZ

dt
=dY − eZ,

(6)

so that system (6) can have Hopf bifurcation at the origin if N = − c2e
bd . The reduced

system on X = 0 is then

dY

dt
=

1

cde
(bce(e− c)Z2 − bcdeY Z + (cde2 − c2de− bd2N)Y

+ (2c2e2 − ce3 − bcdN + bdeN)Z),

dZ

dt
=dY − eZ

(7)

By calculating the first Lyapunov coefficient to check the stability of the Hopf bifurcation,

we obtain α = βcde
2(ce(c−e)+bdN) , γ = β(c(c+e)−e2)

2de and

g1 = − βb2cd3

e(3c3(c+ 2ce) + 3(d2 + e2)2 − 2ce(d2 + 3e2)− c2(2d2 + 3e2))
.

For a stable Hopf bifurcation to occur, g1 < 0 must be satisfied. We also look for a
nonnegative equilibrium point in order to have physical meaning. Hence, we obtain the
condition for a stable Hopf bifurcation as b > 0, c > 0, d < 0 and e < −c. �
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Figure 1. Stable Hopf bifurcation for system (8)

Example 2.1. Choosing the parameter values as {b, c, d, e} = {1, 1,−1,−2}, we have the
two dimensional projection

dv

dt
=3w2 − vw − v +

99

100
w,

dw

dt
=− v + 2w

(8)

of system (2). System (8) goes under Hopf bifurcation at the equilibrium point (10150 ,
101
50 )

with the eigenvalues 1
200(−1± i

√
40399). The stable Hopf bifurcation bifurcating from this

equilibrium point is shown in figure 1.

3. SIR model with the Beddington-DeAngelis functional response

Beddington[28] and DeAngelis[29] introduced the Beddington-DeAngelis functional re-
sponse in 1975. The SIR model with Beddington-DeAngelis infection rate is given by

dx

dt
=N − ax− bxz

1 + αx+ βz
,

dy

dt
=

bxz

1 + αx+ βz
− cy,

dz

dt
=dy − ez

(9)

where all parameters are given as in section 1 except for the parameters α and β are the
inhibitory effect parameters with respect to the Beddington-DeAngelis response function.
We assume that all parameters are nonnegative to reflect physical values.

Theorem 3.1. System (9) has at least one stable equilibrium.

Proof. The Jacobian matrix of system (9) is −a−
bz(1+βz)

(1+αx+βz)2
0 − bx(1+αx)

(1+αx+βz)2

bz(1+βz)
(1+αx+βz)2

−c bx(1+αx)
(1+αx+βz)2

0 d −e


and the equilibrium points are E1(

N
a , 0, 0) and
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E2(x2, y2, z2) = E2(
ce+ dβN

d(b+ aβ)− ceα
,
bdN − ce(a+ αN)

c(d(b+ aβ)− ceα)
,
d(bdN − ce(a+ αN))

ce(d(b+ aβ)− ceα)
).

The eigenvalues of the Jacobian matrix of system (9) at equilibrium E1 are −a and

− c+e
2 ±

√
(a+αN)(4bdN+(a+αN)(c−e)2)

2(a+αN) . Hence E1 is a stable equilibrium considering a > 0

and N 6= − a
α and therefore one stable equilibrium of system (9) is guaranteed.

Now we give criteria for E2 to be a stable equilibrium of system (9). We obtain the
characteristic equation of system (9) at E2 as

λ3 +Aλ2 +Bλ+ C = 0

where

A =
ce(bd(c+ e) + aceα) + ((bd− ceα)2 + bd2(a+ c+ e)β)N

bd(ce+ dβN)
,

B = (ac2e2((c+ e)α− dβ) + abd2(c+ e)βN

+ (bd− ceα)((c+ e)(bd− ceα) + cdeβ)N)/(bd(ce+ dβN)),

C =
ce(d(b+ aβ)− ceα)(bdN − ce(a+ αN))

bd(ce+ dβN)
.

According to the Routh-Hurwitz criterion we conclude that if

(ac2e2((c+ e)α− dβ) + abd2(c+ e)βN + (bd− ceα)

((c+ e)(bd− ceα) + cdeβ)N)(ce(bd(c+ e) + aceα)

+((bd− ceα)2 + bd2(a+ c+ e)β)N)

−bcde(ceα− d(b+ aβ))(ce+ dβN)(−bdN + ce(a+ αN)) > 0

and A,B,C ≥ 0, x2 ≥ 0, y2 ≥ 0, z2 ≥ 0 and bd(ce+ dβN) 6= 0 are satisfied then E2 is also
a stable equilibrium of system (9). �

Theorem 3.2. The invariant planes l1,...,7 given in corresponding cases of Theorem 2.3
are also invariant planes of system (9). Additionally system (9) has an invariant surface
if one of the following cases are satisfied.

i. β = a− c+e
2 = N(bd− ceα)− ce

2 (c+ e) = 0
ii. d = α = a− c− e = 0

iii. d = a− c+e
2 = Nα+ c+e

2 = 0
iv. d = a− c

2 = b+ β(e− c
2) = 0

v. d = β(a− e)− b = a+Nα = 0
vi. a− 2c = cα+ dβ = b+ eβ = 0

vii. a− 2e = eα+ dβ = b+ cβ = 0
viii. d = α = β = a+ e = 0

ix. d = α = a− 2e = c− e = 0
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Proof. If β = a− c+e
2 = N(bd− ceα)− ce

2 (c+ e) = 0, system (2) has the invariant surface

l8 = 1 +
2(αce− bd)

ce
x+ (

αce− bd
ce

)2x2 − 2bd(c+ e)2(bd− αce)
c2e2(αc2 + 4bd− 2αce+ αe2)

y

+
8bd(bd− αce)2

c2e2(αc2 + 4bd− 2αce+ αe2)
xy +

4bd(bd− αce)2

c2e2(αc2 + 4bd− 2αce+ αe2)
y2

− 2b(bd− αce)(c2 − e2)
c2e(αc2 + 4bd− 2αce+ αe2)

z +
4b(c− e)(bd− αce)2

c2e2(αc2 + 4bd− 2αce+ αe2)
xz

+
4b(c− e)(bd− αce)2

c2e2(αc2 + 4bd− 2αce+ αe2)
yz

with the cofactor −c− e.
If d = α = a− c− e = 0, system (2) has the invariant surface l9 = 1− c+e

N x− b(c+e)
ce z +

b(c+e)
eN xz + (c+e)(b+βe)

eN yz with the cofactor −c− e.
If d = a − c+e

2 = Nα + c+e
2 = 0, system (2) has the invariant surface l10 = 1 + 2αx +

α2x2 + 2(bc+be)
c(c−e) z + 4αb

c−exz −
2(−2αb+αβc−αβe)

c−e yz with the cofactor −c− e.
If d = a − c

2 = b + β(e − c
2) = 0, system (2) has the invariant surface l11 = 1 − c

N x +
c2

4N2x
2 + (−c2−2αcN)

2αN2 y − bc2

α(c2−3ce+2e2)N
z + bc2

α(c−2e)N2xz with the cofactor −c.
If d = β(a− e)− b = a+Nα = 0, system (2) has the invariant surface l12 = 1 + 2αx+

α2x2 + 2αβN
e+2αN z + 2αβxz with the cofactor 2αN .

If a− 2c = cα+ dβ = b+ eβ = 0, system (2) has the invariant surface

l13 = 1 +
2βd

αN
x+

2αβd(dβ + eα)

α3eN + α2βdN − αβde− 2β2d2
y +

2β2d2(2βd+ αe)

N(α3eN + α2βdN − αβde− 2β2d2)
xy

+
β2d2(2βd+ αe)

N(α3eN + α2βdN − αβde− 2β2d2)
y2 +

2β3d2

α3eN + α2βdN − αβde− 2β2d2
z

− 2β3d2(2βd+ αe)

αN(α3eN + α2βdN − αβde− 2β2d2)
xz

with the cofactor 2βd
α .

If a− 2e = eα+ dβ = b+ cβ = 0 system (2) has the invariant surface

l14 = 1 +
2βd

αN
x+

2αβd(αc+ βd)

α3cN + α2βdN − αβcd− 2β2d2
y +

2β2d2(αc+ 2βd)

N(α3cN + α2βdN − αβcd− 2β2d2)
xy

+
β2d2(αc+ 2βd)

N(α3cN + α2βdN − αβcd− 2β2d2)
y2 +

2αβc(αc+ 2βd)

α3cN + α2βdN − αβcd− 2β2d2
z

+
2β2cd(αc+ 2βd)

N(α3cN + α2βdN − αβcd− 2β2d2)
xz +

2β2d(α2c2 + 3αβcd+ 2β2d2)

αN(α3cN + α2βdN − αβcd− 2β2d2)
yz

+
β2(αc+ βd)2(αc+ 2βd)

α2N(α3cN + α2βdN − αβcd− 2β2d2)
z2

with the cofactor 2βd
α .

If d = α = β = a+ e = 0, system (2) has the invariant surface l15 = 1− b
N xz with the

cofactor −bz.
If d = α = a−2e = c− e = 0, system (2) has the invariant surface l16 = 1− 2e

N x−
2b
e z+

2b
N xz + 2(b+βe)

N yz with the cofactor −2e. �

Theorem 3.3. System (9) has the same first integrals given for the cases in Theorem 2.3.
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Theorem 3.4. In system (9) Hopf bifurcation can occur on the invariant plane l2 of
system (9).

Proof. System (9) after the corresponding transformation with respect to the invariant

plane l1 = 1− e
N x−

e
N y + e(e−c)

dN z which exists if a = e is

dX

dt
=− eX,

dY

dt
=(cdeαY 2 + (be(e− c))Z2 − cdeαXY + bdeXZ − (bde+ ce(dβ − cα

+ αe))Y Z − (cd(e+ αN))Y + bdNZ)/(deαX − deαY − (eα(c− e)
− deβ)Z + d(e+ αN)),

dZ

dt
=dY − eZ

(10)

The Jacobian matrix of system (10) is −e 0 0
J21 J22 J23
0 d −e


where

J21 =
bd2e2Z(1 + βZ)

(deαX − deαY + (deβ + eα(e− c))Z + d(e+ αN))2
,

J22 = (−α2cd2e2X2 − α2cd2e2Y 2 − e2(β(b+ βc)d2 + α2c(c− e)2

+ 2αβcd(e− c))Z2 + 2α2cd2e2XY + (2αcde2(−βd+ α(c− e)))XZ
+ 2αcde2(βd+ α(e− c))Y Z − 2αcd2e(e+ αN)X + 2αcd2e(e+ αN)Y

− de(e((b+ 2βc)d+ 2αc(e− c)) + 2αcN(βd+ α(e− c)))Z − cd2(e+ αN)2)

/(deαX − deαY + (deβ + eα(e− c))Z + d(e+ αN))2,

J23 = (bd2e2αX2 + bd2e2αY 2 + be(eα(c(c− 2e) + e2)− deβ(c+ e))Z2

− 2bd2e2αXY + 2bdeα(e(e− c))XZ + 2bdeα(e(c− e))Y Z + bd2e(e+ 2αN)X

− bd2e(e+ 2αN)Y + 2bde(e− c)(e+ αN)Z + bd2N(e+ αN)

/(deαX − deαY + (deβ + eα(e− c))Z + d(e+ αN))2.

The equilibrium points of system (10) are F0(0, 0, 0) and

F1(0,
ce(e+ αN)− bdN
c(ceα− d(b+ eβ))

,
d(ce(e+ αN))− bdN)

ce(ceα− d(b+ eβ)))
).

The eigenvalues of the Jacobian matrix at F0 are −e and

1

2(e+ αN)
(−(c+ e)(e+ αN)±

√
(e+ αN)(e(c− e)2 + (4bd+ α(c− e)2)N)).

We see that Hopf bifurcation can not occur at F0 for physical values of the parameters.
However if we assume c = −e < 0 system (10) can go through Hopf bifurcation at F0

under one of the following set of conditions.

i. b < 0, d > −α(c−e)2
4b and N > − e(c−e)2

4bd+α(c−e)2 ,

ii. b > 0, α = 0, d > 0, N < − e(c−e)2
4bd and hence N < 0,

iii. b > 0, α > 0, d > 0, − e
α < N < − e(c−e)2

4bd+α(c−e)2 and hence N < 0,
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iv. b > 0, α < 0, 0 < d < −α(c−e)2
4b , − e

α < N < − e(c−e)2
4bd+α(c−e)2 and hence N < 0,

v. b > 0, α < 0, d ≥ −α(c−e)2
4b , N > − e

α and hence N < 0,

vi. b > 0, e > 0, d < −α(c−e)2
4b , N > − e(c−e)2

4bd+α(c−e)2 and hence d < 0.

The eigenvalues of the Jacobian matrix at F1 are −e and

−1

2bd2(ce+ dβN)
(d(bd2N(b+ β(c+ e)) + bcde(c− 2αβ) + αc2e2(e+ αβ))±

√
∆)

where

∆ = (d2(b4d4β2 + c4e4α2(e+ αβ)2 − 2b3d3β(c2e− deβ + cβ(dβ + 2eα))

+ b2d2(c3e2(c+ 4e) + 2c2eβ(dβ(c+ e) + eα(2c+ e)) + (d2β2(c− e)2

+ 4cdeαβ(c− e) + 6c2e2α2)β2)− 2bc2de2(e+ αβ)(c2eα+ dαβ2(c− e)
+ 2ceα2β − 2dβ(ce+ dβ2)).

Hopf bifurcation can occur at F1 if
αce

b+ βe
< d <

αce

b

and

β =
−bc2de− αc2e3

b2d2 + bβcd2 − 2bαcde+ bβd2e+ α2c2e2
< 0

is satisfied.
We move system (10) to F1 to have system

dx

dt
=− ex,

dy

dt
=(αc2de(bd− αce+ βde)y2 − bc(c− e)e(bd− αce+ βde)z2 + αc2de(αce

− d(b+ βe))xy + bcde(bd− αce+ βde)xz − ce(bd− αce+ βde)

((b+ βc)d+ αc(e− c))yz + d(bd− αce)(bdN − ce(e+ αN))x

− d(b2d2N + αc2e2(e+ αN) + bcd(ce+ βdN − e(e+ 2αN)))y

+ (b2d2(e− c)N + c2e2(βd+ α(e− c))(e+ αN) + bcde(2c(e+ αN)

− e(e+ 2αN)))z)/(αcde(bd− αce+ βde)x+ αcde(αce− d(b+ βe))y

+ ce(bd− αce+ βde)(βd+ α(e− c))z + bd2(ce+ βdN)),

dz

dt
=dy − ez

(11)

Then by introducing x = 0 into system (11) we have the following reduced system.

dy

dt
=(αc2de(bd− αce+ βde)y2 − bc(c− e)e(bd− αce+ βde)z2 + αc2de(αce

− ce(bd− αce+ βde)− d(b2d2N + αc2e2(e+ αN)

+ bcd(ce+ βdN − e(e+ 2αN)))y

+ (b2d2(e− c)N + c2e2(βd+ α(e− c))(e+ αN) + bcde(2c(e+ αN)

− e(e+ 2αN)))z)/(αcde(αce− d(b+ βe))y

+ ce(bd− αce+ βde)(βd+ α(e− c))z + bd2(ce+ βdN)),

dz

dt
=dy − ez

(12)
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We see that system (2) can be reduced to two dimensions by using the transformation
defined by the algebraic invariant plane as in system (1). So, Hopf bifurcation exists for
system (2). However, it is not possible to calculate the first Lyapunov coefficient to find
the stability of the Hopf bifurcation for system (2). �

4. Conclusion

In this paper, we have investigated the stability and Hopf bifurcation properties of
an original version and a generalized version with the Beddington-DeAngelis functional
response epidemic model with virus replication. We have used the methods of computa-
tional algebra, i.e. invariant planes where usual methods fail. Both models show Hopf
bifurcation. We have found the parameter conditions for a stable Hopf bifurcation to oc-
cur for the original virus replication model. However, it is not possible to find parametre
conditions for the stability of the Hopf bifurcation of the virus replication model with
the Beddington-DeAngelis functional response although the both models have the same
invariant planes.
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