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EXTENDED B-SPLINE COLLOCATION METHOD FOR

KDV-BURGERS EQUATION

O. E. HEPSON1, A. KORKMAZ2, I. DAG3, §

Abstract. The extended form of the classical polynomial cubic B-spline function is
used to set up a collocation method for some initial boundary value problems derived for
the Korteweg-de Vries-Burgers equation. Having nonexistence of third order derivatives
of the cubic B-splines forces us to reduce the order of the term uxxx to give a coupled
system of equations. The space discretization of this system is accomplished by the
collocation method following the time discretization with Crank-Nicolson method. Two
initial boundary value problems, one having analytical solution and the other is set up
with a non analytical initial condition, have been simulated by the proposed method.

Keywords: KdV-Burgers Equation; Extended cubic B-spline; collocation; motion of
waves.

AMS Subject Classification: 83-02, 99A00

1. Introduction

Consider the Korteweg-de Vries - Burgers (KdVB) equation of the form

ut + εuux − ϑuxx + µuxxx = 0 a ≤ x ≤ b (1)

where u = u(x, t), subscripts denote the derivatives and ε,ν and µ are real coefficients with
the property ενµ 6= 0[1]. The KdVB equation for dispersive and dissociative media is de-
rived in various cases such as existence and absence of a complete system of eigenvector or
for waves in plasma with Hall dispersion and Joule dissipation by Ruderman[2]. Including
both viscosity and inertia terms simultaneously causes long gravity waves to be governed
by the KdVB equation. This result was obtained by deriving the balance equations for an
incompressible viscous fluid starting from the column model approximation in the study
of Bampi and Morro[3].
The Weierstrass P -function solution, which can be expressed in terms of Jacobi cosine
functions, for the KdVB 1 was found by Kalinowski and Grundland [1]. In the study,
the Riemann invariants for non-homogenous systems of the first order partial differential
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equations method was implemented to obtain that solution. Brugarino and Pantano [4]
obtaned the Jacobi elliptic type solution of the nonhomogenous KdVB equation with
variable coefficients. Some travelling solitary wave solutions to compound KdVB equation
was developed by using automated method based on an ansatz of a polynomial in terms
of a tanh function[5]. A particular analytical solution for the KdVB equation was also
obtained by using variable transformations and proofs of theorems[6]. The solutions in
the stationary waves form were determined for the generalized KdVB equation containing
nonconservative terms of linear pump, linear HF dissipation, and nonlinear dissipation[7].
The exact solutions consisting of powers of some hyperbolic functions of the KdVB equa-
tion were derived by homogenous balance technique in [8]. These solutions are the combi-
nation of a belly-shape and kink-type solitary waves. Zhao [9] implemented the hyperbolic
function method and the Wu elimination technique for the new type solitary wave and pe-
riodic solutions containing some blow-up solutions of the KdVB. After reducing the KdVB
equation to an ordinary differential equation by the compatible wave transformation, he
determined the coefficients and parameters in the predicted solution by substituting it
into this equation. Yuanxi and Jiashi[10] developed many solitary wave solutions for the
KdVB equation by the superposition method based on the analysis on the features of the
Burgers, the KdV and the KdV-Burgers equations. A generalized tanh function method
based on Riccati equation was derived to obtain multiple soliton solutions containing some
trigonometric, hyperbolic and complex functions for the KdVB equation[11]. Soliman[12]
obtained the tanh-type, coth-type exact solutions of the equation by the modified ex-
tended tanh method. tanh-type solution for the KdVB equation was obtained by using
G′/G expansion method[13]. Some compact and non-compact solutions for variants of
the KdVB equation were constructed by Wazwaz[14]. Kudryashov showed that many of
the solutions of the KdVB equation listed above can be converted to each other by using
[15]. He also showed that the traveling wave solutions of the Fisher equation and the
KdVB are in the same form and derived an exponential-type solution with the assistance
of Weierstrass function for the KdVB equation.
Besides proposed various exact solutions in the literature summarized above, some nu-
merical techniques were also developed to solve some problems constructed with KdVB
equation. One of the frontier numerical studies on KdVB equation is based on Bubnov-
Galerkin’s finite element method using cubic B-splines[16]. The temporal evaluation of a
Maxwellian and the time evaluation of the solutions were studied in details in that study.
A collocation method based on quintic B-spline functions and Galerkin method based on
quartic B-spline functions were derived for the numerical solutions of the KdVB equation
respectively[17, 20]. A linear Galerkin-Fourier spectral technique was implemented for the
numerical solutions of the KdVB eqution with periodic initial condition[21]. An extended
B-spline collocation method was also applied to derive numerical solutions of Fisher equa-
tion in [18]. Recently, solutions of system of second order boundary value problem were
obtained using extended B-spline functions [19].

The basic aim of the study is to show the influence of the extended cubic B-splines in
the collocation method on finding numerical solution of the KdVB equation. Secondly,
comparison of the results obtained by the both suggested method and existing methods
is going to be made to see the prosperity.
In this study, we consider some initial boundary value problems defined as

ut + εuux − ϑuxx + µuxxx = 0 a < x < b (2)

subject to the initial condition

u(x, 0) = f(x), a ≤ x ≤ b
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in the finite problem interval [a, b]. We choose the boundary conditions from the set

u(a, t) = g1(t), u(b, t) = g2(t),

ux(a, t) = g3(t), ux(b, t) = g4(t),

uxx(a, t) = g5(t), uxx(b, t) = g6(t),

uxxx(a, t) = g7(t), uxxx(b, t) = g8(t)

where gi(t), i = 1, 2, ..., 8 denote x independent functions.

2. Method of Solution

2.1. Extended Cubic B-splines. Let π be a uniform grid distribution of the finite
interval [a, b] such as π : a = x0 < x1 < . . . < xN = b with equal sub interval length
h = (b− a)/N . The extended form of a cubic B-spline Ei is defined as [22, 23]

Ei(x) =
1

24h4



4h(1− λ)(x− xi−2)3 + 3λ(x− xi−2)4, [xi−2, xi−1] ,
(4− λ)h4 + 12h3(x− xi−1) + 6h2(2 + λ)(x− xi−1)2
−12h(x− xi−1)3 − 3λ(x− xi−1)4

[xi−1, xi] ,

(4− λ)h4 − 12h3(x− xi+1) + 6h2(2 + λ)(x− xi+1)
2

+12h(x− xi+1)
3 − 3λ(x− xi+1)

4 [xi, xi+1] ,

4h(λ− 1)(x− xi+2)
3 + 3λ(x− xi+2)

4, [xi+1, xi+2] ,
0 otherwise.

(3)
where the real λ is the free parameter. In fact, classical cubic polynomial B-splines are the
particular form of extended cubic B-splines when λ = 0. The set of the extended cubic
B-splines {Ei(x)}N+1

i=−1 is a basis for the functions defined in the interval [x0, xN ][22, 23].
When the free parameter is chosen different from zero, the shape of the function changes
slightly, Fig 1. The nonzero functional and derivative values of each extended cubic B-
spline Ei(x) at the grids of πin the [a, b] can be summarized as in Table 1.

Figure 1. Extended B-splines for various values of the free parameter λ

Having only first two derivatives of each extended B-spline Ei(x) forces us to reduce the
derivative order of the KdVB equation (1). Thus, defining a new variable v(x, t) = ux(x, t)
reduces the KdVB equation (1) to a coupled system of equations

ut + εuv − ϑvx + µvxx = 0

ux − v = 0
(4)
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Table 1. Ei(x) and its derivatives at the grid points

x xi−2 xi−1 xi xi+1 xi+2

24Ei(x) 0 4− λ 16 + 2λ 4− λ 0

2hE
′
i(x) 0 −1 0 1 0

2h2E
′′
i (x) 0 2 + λ −4− 2λ 2 + λ 0

2.2. Collocation Method. Let U(x, t) and V (x, t) be the approximate solutions to
u(x, t) and v(x, t), respectively that

U(x, t) =
N+1∑
i=−1

δiEi(x),

V (x, t) =
N+1∑
i=−1

φiEi(x)

(5)

where δi and φi are time dependent parameters that will be calculated via the extended
cubic B-splines and the complementary conditions. The approximate solutions given in
(5) and their first and second derivatives at a grid xi can be determined by using the Table
(1). Thus, the approximate solutions and their derivatives take the form

Ui = U(xi, t) =
4− λ

24
δi−1 +

8 + λ

12
δi +

4− λ
24

δi+1,

U ′i = U ′(xi, t) =
−1

2h
(δi−1 − δi+1)

U ′′i = U ′′(xi, t) =
2 + λ

2h2
(δi−1 − 2δi + δi+1)

Vi = V (xi, t) =
4− λ

24
φi−1 +

8 + λ

12
φi +

4− λ
24

φi+1

V ′i = V ′(xi, t) =
−1

2h
(φi−1 − φi+1)

V ′′i = V ′′(xi, t) =
2 + λ

2h2
(φi−1 − 2φi + φi+1)

(6)

To integrate the system (4) in time variable we first use forward finite difference and the
Crank-Nicolson methods to give

Un+1 − Un

∆t
+ ε

(UV )n+1 + (UV )n

2
− ϑ(Vx)n+1 + (Vx)n

2
+ µ

(Vxx)n+1 + (Vxx)n

2
= 0

Un+1
x + Unx

2
− V n+1 + V n

2
= 0

(7)

where Un+1 = U(x, (n + 1)∆t) represent the solution at the (n + 1).th time level. Here
tn+1 = tn + t, and ∆t is the time step, superscripts denote n.th time level , tn = n∆t.
Linearizing the terms (UV )n+1and (UV )n in (7) as

(UV )n+1 = Un+1V n + UnV n+1 − UnV n

(UV )n = UnV n (8)

gives

Un+1 − Un

∆t
+ ε(

Un+1V n + UnV n+1

2
)− ϑ(

V n+1
x + V n

x

2
) + µ(

V n+1
xx + V n

xx

2
) = 0

Un+1
x + Unx

2
− V n+1 + V n

2
= 0

(9)
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Substitution of the approximate solutions (5) and their derivatives (6) into (9) yields

νm1δ
n+1
m−1 + νm2φ

n+1
m−1 + νm3δ

n+1
m + νm4φ

n+1
m + νm1δ

n+1
m+1 + νm5φ

n+1
m+1 (10)

= νm6δ
n
m−1 + νm7φ

n
m−1 + νm8δ

n
m + νm9φ

n
m + νm6δ

n
m+1 + νm10φ

n
m+1

νm11δ
n+1
m−1 + νm12φ

n+1
m−1 + 0δn+1

m + νm13φ
n+1
m + νm11δ

n+1
m+1 − νm12φ

n+1
m+1 (11)

= −νm11δ
n
m−1 − νm12φ

n
m−1 + 0δnm − νm13φ

n
m − νm11δ

n
m+1 + νm12φ

n
m+1

The coefficients in the system (10) and (11) are

νm1 =

(
2

∆t
+ εL

)
α1 νm8 =

2

∆t
α2

νm2 = εKα1 − ϑβ1 + µγ1 νm9 = −µγ2
νm3 =

(
2

∆t
+ εL

)
α2 νm10 = −ϑβ1 − µγ1

νm4 = εKα2 + µγ2 νm11 = β1
νm5 = εKα1 + ϑβ1 + µγ1 νm12 = −α1

νm6 =
2

∆t
α1 νm13 = −α2

νm7 = ϑβ1 − µγ1
where

K = α1δi−1 + α2δi + α1δi+1

L = α1φi−1 + α2φi + α1φi+1

and

α1 =
4− λ

24
, α2 =

8 + λ

12

β1 = − 1

2h
, γ1 =

2 + λ

2h2
, γ2 = −4 + 2λ

2h2

The system (10-11) can be written in the following matrices system

Axn+1 = Bxn (12)

where

A =



νm1 νm2 νm3 νm4 νm1 νm5

νm11 νm12 0 νm13 νm11 −νm12

νm1 νm2 νm3 νm4 νm1 νm5

νm11 νm12 0 νm13 νm11 −νm12

. . .
. . .

. . .
. . .

. . .
. . .

νm1 νm2 νm3 νm4 νm1 νm5

νm11 νm12 0 νm13 νm11 −νm12


and

B =



νm6 νm7 νm8 νm9 νm6 νm10

−νm11 −νm12 0 −νm13 −νm11 νm12

νm6 νm7 νm8 νm9 νm6 νm10

−νm11 −νm12 0 −νm13 −νm11 νm12

. . .
. . .

. . .
. . .

. . .
. . .

νm6 νm7 νm8 νm9 νm6 νm10

−νm11 −νm12 0 −νm13 −νm11 νm12


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There are 2N + 2 equations with 2N + 6 unknown parameters

xn+1 = (δn+1
−1 , φn+1

−1 , δ
n+1
0 , φn+1

0 . . . , δn+1
N+1, φ

n+1
N+1)

in this system. A unique solution of the system can be obtained by imposing the boundary
conditions Ux(a, t) = 0, Ux(b, t) = 0, Vx(a, t) = 0, Vx(b, t) = 0 to have the following the
equations:

δ−1 = δ1, φ−1 = φ1, δN−1 = δN+1, φN−1 = φN+1

Elimination of the parameters δ−1, φ−1, δN+1, φN+1, using the equations (10) from the
the system gives a solvable system of 2N + 2 linear equations including 2N + 2 unknown
parameters.

Since the right handside of this equation consists of only known values at the n.th time
level, the solution of the system gives the solution at the (n+ 1).th time level. In order to
initialize this iteration system, we need the initial vector x0.The initial parameter vectors
d1 = (δ−1, δ0, ..δN , δN+1), d2 = (φ−1, φ0, ..φN , φN+1) can be determined by using

Uxx(a, 0) = 0 = γ1δ
0
−1 + γ2δ

0
0 + γ1δ

0
1 ,

Uxx(xi, 0) = γ1δ
0
i−1 + γ2δ

0
i + γ1δ

0
i+1 = Uxx(xi, 0), i = 1, ..., N − 1

Uxx(b, 0) = 0 = γ1δ
0
N−1 + γ2δ

0
N + γ1δ

0
N+1,

Vx(a, 0) = 0 = φ0−1 − φ01
Vx(xi, 0) = φ0i−1 − φ0i+1 = Vx(xi, 0), i = 1, ..., N − 1
Vx(b, 0) = φ0N−1 − φ0N+1

3. Numerical tests

We chose some initial boundary value problems constructed on the the KdV-Burgers
equation to check the accuracy and validity of the proposed method. The discrete maxi-
mum error norm

L∞ = |u− U |∞ = max
j

∣∣uj − Unj ∣∣
between the numerical and exact solution is computed for different values of the viscosity
parameter ϑ, different times with various time and space step sizes ∆t, h.

3.1. Example 1: Initial boundary value problem with analytical solution. Con-
sider the initial boundary value problem constructed with the KdV-Burgers’ equation (1)
with the initial condition

u(x, 0) = −6ϑ2

25µ

[
1 + tanh

(
ϑx

10µ

)
+

1

2
\sech2

(
ϑx

1
0µ

)]
and the boundary conditions

u(x, a) = −6ϑ2

25µ

[
1 + tanh

(
ϑ

10µ
(a+

6ϑ2

25µ
t)

)
+

1

2
\sech2

(
ϑ

10µ
(a+

6ϑ2

25µ
t)

)]
u(x, b) = −6ϑ2

25µ

[
1 + tanh

(
ϑ

10µ
(b+

6ϑ2

25µ
t)

)
+

1

2
\sech2

(
ϑ

10µ
(b+

6ϑ2

25µ
t)

)]
These complementary conditions have been derived from the Fan and Zhang’s [24] ana-
lytical solution of the form

u(x, t) = −6ϑ2

25µ

[
1 + tanh

(
ϑ

10µ

(
x+

6ϑ2

25µ
t

))
+

1

2
\sech2

(
ϑ

10µ

(
x+

6ϑ2

25µ
t

))]
(13)

for the particular choice of ε = 1. This solution has three components, a constant, the
tanh component and the sech component and it represents a traveling wave moving along
the x−axis as time goes.
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(a) (b) (c)

Figure 2. The profiles of travelling waves at t = 1 for various values of ϑ

(a) (b) (c)

Figure 3. Error distributions at the time t = 1 for various values of ϑ

For the sake of comparison with some earlier works, we fix the parameters µ = 0.01,
h = 0.5, ∆t = 0.001 and run the algorithm in the finite problem interval [−20, 20] up
to the terminating time t = 1. When the coefficient is chosen as ϑ = 0.001, 0.005 and
0.01, the terminating time profiles of the waves are given in Fig 2a-2c. The increase of
the dispersion parameter value dominates the Burgers-type solution and the wave gets
steeper. The maximum error distrubitions for each case are also plotted in Fig 3a-3c for
the same parameter values. The error distribution plots in all cases show that the error is
greater near the descent part of the wave.
A comparison of discrete maximum norms with the results obtained by the radial basis
collocation methods with multiquadric (MQ), inverse quadric (IQ) and Gaussian (GA)
forms in the study[25] at the time t = 1 and t = 10 is tabulated in Table 2. For com-
patibility we chose the parameters as ε = 1, ϑ = 0.004, ∆t = 0.001 and h = 0.5. This
comparison is an indicator of the efficiency of the proposed method based on the extended
B-spline functions. Both the particular selections of the extention parameter of the ex-
tended B-splines as λ = 0 and λ = −1.969 gives at least two decimal digits better results
than the results of radial basis collocation methods. Even the proposed method for both
values of extension parameter generate the results in the same decimal digit accuracy at
the time t = 1, the nonzero value of the extension parameter keeps the accuracy digits at
t = 10 but the classical cubic B-spline based method lose one decimal digit in accuracy.
The method derived from radial basis functions can not catch the same accuracy even
though the same parameters are used during the implementation of the proposed.

3.2. Example 2: Non analytical initial data. In the second problem, we consider the
particular form of the KdVB when ϑ = 0. Eliminating the dispersion term reduces the
KdVB to the Korteweg-de Vries equation (KdVE). In order to check the validity of the
method, we chose a non analytical solution describing the split of the initial pulse into a
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train of waves. This initial pulse is described by the data

u(x, 0) =
1

2

[
1− tanh

|x| − 25

5

]
(14)

and the routine is run up to the terminating time t = 800 in the finite interval [−50, 150]
for the compatibility to the results obtained in [26, 27, 28]. During this long process time
we will observe the lowest four conserved quantities [29, 27]

C1 =

∞∫
−∞

udx

C2 =

∞∫
−∞

u2dx

C3 =

∞∫
−∞

(
u3 − 3µ

ε
(u′)2

)
dx

C4 =

∞∫
−∞

(
u4 − 12

µ

ε
uu2x + 7.2

µ2

ε2
u2xx

)
dx

to be calculated for this initial boundary value problem. The approximate values of the
conserved quantities are computed by modified trapezoid rule that the mean of the func-
tional values at the consecutive points in the problem interval instead of the functional
values at the grid points. The parameters are chosen as ε = 0.2, µ = 0.1, ∆t = 0.05,
h = 0.4 in accordance with the earlier study of Korkmaz[27]. The conserved quantities for
various choices of the extension parameter λ are compared with the ones obtained by the
differential quadrature methods based on cosine expansion (CDQ) and the Lagrange poly-
nomials (LPDQ) combined with fourth order Runge-Kutta technique at various discrete
times during the simulation, Table 3.
It can be concluded that the lowest two quantities C1 and C2 that do not contain any
derivatives of the solution are conserved successfully for all values of the extension param-
eter λ even its zero. They both are in good agreement with the ones reported in Korkmaz’
study [27]. Although the third lowest quantity C3 is conserved during the simulation time
for all choices of the extension parameter, its computed value changes dependently on the
extension parameter λ. When the extension parameter approaches to 0 in absolute value,
its computed values also approache to its initial value. A similar situation is also observed
during the calculation of C4. Except the choice λ = −1, the other values of the extension
parameter conserve the quantity acceptably even its numerical value deviates from its
initial value. The deviations for all cases are directly proportional to the absolute value
of extension parameter that the increase in the absolute value of the extension parameter
enlarges the deviation.

Table 2. Comparison of the maximum error with radial basis collocation
methods

t Present (λ = 0) Present (λ = −1.969) MQ [25] GA[25] IQ[25]

1 9.441× 10−11 7.271× 10−11 6.822× 10−9 7.913× 10−9 4.077× 10−7

10 1.269× 10−10 9.509× 10−11 2.479× 10−8 3.294× 10−6 1.270× 10−6
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The initial pulse initially positioned at x = 0 begins its motion to the right as it splits
into new waves. Three new waves and some oscillations following them can be observed
at t = 100. The leading wave’s height is 1.587 units and its peak is positioned at x = 32.0.
The peaks of the following two waves are positioned at x = 25.2 and 19.2 with heights
1.294 and 1.126, Fig 4b. The number of new apparent waves reaches 6 at t = 200. The
peaks of the leading and the two followers of it reach x = 44.0, x = 36.0 and x = 28.8,
respectively. Their heights are measured as 1.846, 1.701 and 1.550 at this distinct time,
Fig 4c. At t = 400, we see two more new waves are formed following the first 6 waves, Fig
4d. When the time reaches t = 600, the number of significant waves is 9, Fig 4e. At the

Table 3. Comparison of the lowest four conserved quantities

Method λ t C1 C2 C3 C4

0 50.000 45.000 42.301 40.442

Present 0 200 50.001 45.002 42.404 40.983
400 49.999 45.003 42.451 41.264

600 49.999 45.003 42.453 41.290
800 50.001 45.003 42.454 41.297

Present −1 200 50.000 44.870 34.523 9.396
400 50.000 44.785 29.485 −7.116
600 50.000 44.773 28.803 −8.721
800 50.000 44.771 28.705 −8.904

Present −0.5 200 50.000 44.957 39.748 30.237
400 50.000 44.928 38.050 24.631
600 50.000 44.924 37.811 24.061

800 50.000 44.923 37.776 23.991

Present −0.25 200 50.000 44.983 41.263 36.353
400 50.000 44.971 40.557 34.078

600 50.000 44.969 40.455 33.846
800 50.000 44.969 40.439 33.814

Present −0.125 200 50.000 44.969 40.439 33.814
400 50.000 44.988 41.567 37.900

600 50.000 44.987 41.519 37.804
800 50.000 44.987 41.511 37.791

Present 1 200 50.000 45.047 45.072 51.883
400 49.997 45.078 46.889 58.291
600 50.001 45.082 47.140 58.933

800 50.004 45.082 47.174 58.994

Present 0.5 200 50.001 45.029 44.006 47.514

400 49.997 45.048 45.113 51.442
600 50.001 45.051 45.273 51.885

800 50.002 45.050 45.286 51.881

Present 0.25 200 50.001 45.017 43.294 44.606

400 49.999 45.028 43.930 46.907
600 49.999 45.029 44.016 47.144

800 50.000 45.029 44.031 47.186

Present 0.125 200 50.001 45.001 42.786 42.899

400 49.998 45.016 43.233 44.248
600 50.001 45.017 43.280 44.387
800 50.000 45.017 43.286 44.396

CDQ[27] 200 49.997 45.001 42.301 43.835

400 50.017 45.005 42.304 68.403
600 50.006 45.003 42.303 59.367

800 49.944 45.019 42.314 166.836

PDQ[27] 200 49.984 45.001 42.301 40.442

400 49.985 45.001 42.301 40.442
600 49.977 45.001 42.301 40.442

800 49.965 45.000 42.301 40.442
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(a) t = 0 (b) t = 100 (c) t = 200

(d) t = 400 (e) t = 600 (f) t = 800

Figure 4. The split of an initial pulse into waves

terminating time of the simulation, even though we do not observe a significant change
in the number of the formed waves, Fig 4f, an important increase in the velocity and
heights of the leading waves is clearly seen. The first three leading waves reach x = 121.2,
x = 110.0 and x = 97.60 with heights 1.930, 1.846 and 1.703, respectively.

4. Conclusion

The extended form of the classical polynomial cubic B-spline is adapted for the collocation
method and implemented for the numerical solutions of some initial boundary value prob-
lems constructed with the KdVB equation even though the third order derivative of the
extended cubic B-splines. The term uxxx is eliminated from the KdVB equation by a sim-
ple transformation. The coupled system derived from the elimination of uxxx is discretized
in time by the Crank-Nicolson method. Following the linearization of the nonlinear term,
the approximate solutions are substituted into the system instead of the exact solutions.
After adapting the boundary conditions, the time iteration algorithm becomes ready to
integrate the system in time variable.
The accuracy and efficiency of the proposed algorithm are monitored by solving two initial
boundary value problems. The motion of traveling wave is considered in the first case.
The solution simulations are accomplished successfully by the proposed method for various
extension parameters λ. The accuracy of the results is measured by the discrete maxi-
mum norm that is showing the maximum distance between the analytical and numerical
solutions. A comparison with some earlier studies, multiquadric (MQ), Gaussian(GA)
and Inverse quadric(IQ), show that the accuracy of the results obtained by the proposed
method is at least two decimal digits better.

Results obtained by the different extension parameter λ is documented in Table 2.
We see that the least numerical error is obtained when λ=0 so that improvement in the
accuracy can not be observed with the extension term used for the the cubic B-splines on
getting solutions of the first test problem of the KdVB equation.
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In the second problem, we study wave formation from a non analytical initial data for the
KdV equation obtained by eliminating the dispersion term. The graphical representations
of the results at some distinct times are in a good agreement with some previous results.
The lowest four conserved quantities are also computed at some specific times. The exten-
sion parameter has a critical role to increase the accuracy of the extended cubic B-spline
based methods. Both travelling and generation of waves of the KDVB equation are fairly
simulated with use of the extended cubic B-spline collocation algorithm which can also be
suggested to solve the partial differential equations reliably.
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