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ON SOME PROPERTIES OF NORMAL Γ-IDEALS IN NORMAL

Γ-SEMIGROUPS

A. BASAR1, M. Y. ABBASI1, §

Abstract. We introduce the concept of normal Γ-ideal and bi-Γ-ideal in normal Γ-
semigroups. We characterize the (normal) Γ-semigroup and normal regular Γ-semigroup
in terms of elementary properties of bi-Γ-ideal proving the various equivalent conditions.
In particular, we establish, among the other things, that if I1, I2 are any two normal Γ-
ideals of a Γ-semigroup S, then their product I1ΓI2 and I2ΓI1 are also normal Γ-ideals of
S and I1ΓI2 = I2ΓI1. Finally, we show that the minimal normal Γ-ideal of a Γ-semigroup
S is a Γ-group.
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1. Introduction and Preliminaries

A semigroup is an algebraic structure consisting of a nonempty set S together with an
associative binary operation [2], [8]. The formal investigation of semigroups was initiated
in the beginning of 20th century. Semigroups are significant in different fields of math-
ematics, for instance, language and coding theory, combinatorics, automata theory and
mathematical analysis. The concept of the Γ-semigroup was given by M. K. Sen [12] in
1981 as a generalization of semigroups and ternary semigroups. Many classical properties
of semigroups are also true for Γ-semigroups. Many authors extended and generalized the
results of semigroups to Γ-semigroups. Our paper is inspired by the rapid development of
the theory of Γ-semigroup investigated by lot of researchers, for instance, by Chattopad-
hyay, Chinram, Sen and Saha [5], [6], [10], [14] in different directions.

The purpose of this paper is to study some semigroup-theoretic results in the framework of
the broader perspective of Γ-semigroups motivated by generalizations, and with the possi-
ble applications to, the ideal theory of other algebraic structures. Our results will provide
an analogue for normal ideals and bi-ideals of semigroups in [1] giving the description of
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the characterization of Γ-semigroup via normal Γ-ideals and particularly bi-Γ-ideals. In
fact, the class of normal Γ-ideals in normal Γ-semigroups is a generalization of the class
of the normal ideals in normal semigroups.

For the information of our readers, we now recall and present some necessary definitions,
a few notions and auxiliary results that will be used throughout this paper.

Suppose A and B are two nonempty sets. Let S be the set of all mappings from A to B
and Γ be the set of all mappings from B to A. Now, the usual mapping product of two
elements of S cannot be defined. However, if we consider f , g from S and α, β from Γ,
then, the usual mapping products f ·α · g and α · f · β are defined. Moreover, f ·α · g ∈ S
and α · f · β ∈ Γ and f · α · (g · β · h) = f · (α · g · β) · h = (f · α · g) · β · h for all f, g, h ∈ S
and α, β ∈ Γ. This is the main motivation for Sen [11] to define the Γ-semigroup. We
follow the definition of the Γ-semigroup by M. K. Sen and N. K. Saha [9] given in 1986 as
follows:

Definition 1.1. Let S and Γ be two nonempty sets. Then, a triple of the form (S,Γ, ·) is
called a Γ-semigroup, where · is a ternary operation S×Γ×S → S such that (x·α·y)·β ·z =
x ·α · (y · β · z) for all x, y, z ∈ S and all α, β ∈ Γ. Let T be a nonempty subset of (S,Γ, ·).
Then, T is called a sub-Γ-semigroup of (S,Γ, ·) if a · γ · b ∈ T for all a, b ∈ T and γ ∈ Γ.
Furthermore, a Γ-semigroup S is said to be commutative if a ·γ · b = b ·γ ·a for all a, b ∈ S
and γ ∈ Γ.

Example 1.1. [6] Let S = [0, 1] and Γ = { 1
n : n is a positive integer }. Then, S is a

Γ-semigroup under the usual multiplication. Next, let K = [0, 1/2]. We have that K is
a nonempty subset of S and a · γ · b ∈ K for all a, b ∈ K and γ ∈ Γ. Then, K is a sub
Γ-semigroup of S.

The above example depicts that every semigroup is a Γ-semigroup and thus, Γ-semigroup
is a generalization of semigroups. For other examples of Γ-semigroups, we can see [7], [8],
[11].

Notation 1. For subsets A, B of a Γ-semigroup S, the product set A · B of the pair
(A,B) relative to S is defined as A · Γ · B = {a · γ · b | a ∈ A, b ∈ B and γ ∈ Γ} and for
A ⊆ S, the product set A ·A relative to S is defined as A2 = A ·A = A · Γ ·A.

Notation 2. We denote by B(S), the set of all bi-Γ-ideals of S and B(S), the set of
nonempty subsets of the Γ-semigroup S.

Definition 1.2. A Γ-semigroup S is called normal if sΓS = SΓs for all s ∈ S.
Definition 1.3. An ideal I of a Γ-semigroup S is called normal if sΓI = IΓs for all
s ∈ S.

If there is no way of any confusion, we identify the Γ-semigroup (S,Γ, ·) by S. Through-
out this paper, for the sake of clarity, we denote a · γ · b by aγb. A sub Γ-semigroup T of
a Γ-semigroup S is called normal if sΓT = TΓs for all s ∈ S. A Γ-semigroup S is called
left (right) regular if for every element s ∈ S, there exists an element a ∈ S such that
s = aγ1sγ2s(s = sγ1sγ2a) for all γ1, γ2 ∈ Γ. A Γ-semigroup S is called intra-regular if for
any s ∈ S, there exist elements a, b ∈ S such that s = aγ1sγ2sγ3b for all γ1, γ2, γ3 ∈ Γ.
A Γ-semigroup S is called completely regular if for any element s ∈ S there exists an
element a ∈ S such that s = sγ1a and sγ1a = aγ2s for all γ1, γ2 ∈ Γ. We denote and
define the principal left Γ-ideal, right Γ-ideal and bi-Γ-ideal of S generated by s ∈ S as
follows: (s)L = s ∪ SΓs, (s)R = s ∪ sΓS, (s)B = s ∪ s2 ∪ sΓSΓs. An element a of S is
called a zero element of S if sγa = aγs = a for s ∈ S and γ ∈ Γ.
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2. Main Results

We begin by sketching some elementary properties of (normal) Γ-semigroups and there-
after giving a characterization of the (normal) Γ-semigroups in terms of (normal) Γ-ideals
and bi-Γ-ideals. Most of the results of this paper is purely ideal-theoretic. We start with
the following Proposition:

Proposition 2.1. Suppose I is any Γ-ideal of a Γ-semigroup S. Then, we have

(i): IΓ(s)B = IΓ(s)L = IΓs for all s ∈ S,

(ii): (s)BΓI = (s)RΓI = sΓI for all s ∈ S.
Proof. Suppose s ∈ S. Then we have

IΓ(s)L = I Γ(s ∪ SΓs)

= IΓs ∪ I Γ(SΓs)

= IΓs ∪ (IΓS)Γs

⊆ IΓs ⊆ IΓ(s)L,

and

IΓ(s)B = IΓ(s ∪ s2 ∪ sΓSΓs)

= IΓs ∪ IΓs2 ∪ IΓ(sΓSΓs)

= IΓs ∪ (IΓs)Γs ∪ (IΓsΓS)Γs

⊆ IΓs ⊆ IΓ(s)B.

So, IΓ(s)B = IΓ(s)L = IΓs for all s ∈ S.
In a similar fashion, we can prove that

(s)BΓI = (s)RΓI = sΓI

for all s ∈ S.

Theorem 2.1. The following assertions are equivalent for a Γ-ideal I of S:

(i): I is normal;
(i): Y ΓI = IΓY for all Y ∈ B(S);
(iii): (s)BΓI = IΓ(s)B for all s ∈ S;
(iv): (s)BΓI = IΓ(s)L for all s ∈ S;
(v): (s)BΓI = IΓs for all s ∈ S;
(vi): (s)RΓI = IΓ(s)B for all s ∈ S;
(vii): (s)RΓI = IΓ(s)L for all s ∈ S;
(viii): (s)RΓI = IΓs for all s ∈ S;
(ix): sΓI = IΓ(s)B for all s ∈ S;
(x): sΓI = IΓ(s)L for all s ∈ S.

Proof. (i) ⇒ (ii). Let I be normal. Suppose Y is any nonempty subset of S and for
y ∈ Y, x ∈ I, yγx ∈ Y ΓI for γ ∈ Γ. Then, we obtain that yγx ∈ yΓI = IΓy ⊆ IΓY for
γ ∈ Γ and therefore Y ΓI ⊆ IΓY . In a similar fashion, we can observe that IΓY ⊆ Y ΓI
for all Y ∈ B(S).
(ii)⇒ (iii), (iii)⇒ (iv). They are straightforward.
(iv) ⇒ (v), (v) ⇒ (vi), (vi) ⇒ (vii), (vii) ⇒ (viii), (viii) ⇒ (ix), (ix) ⇒ (x) are conse-
quences of Proposition 2.1.
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Theorem 2.2. Suppose I1, I2 are any two normal Γ-ideals of S. Then, their product I1ΓI2

and I2ΓI1 are also normal Γ-ideals of S and I1ΓI2 = I2ΓI1.
Proof. We have I1ΓI2 = I2ΓI1 by Theorem 2.1. For s ∈ S, we have sΓ(I1ΓI2) =
(sΓI1)ΓI2 = (I1Γs)ΓI2 = I1Γ(sΓI2) = I1Γ(I2Γs) = (I1ΓI2)Γs. Hence, I1ΓI2 is normal.

Theorem 2.3. Let I be a Γ-ideal of a regular Γ-semigroup S. Then, the following asser-
tions are equivalent:

(i): I is normal; and for all idempotents e ∈ S;
(ii): eΓI = IΓe;
(iii): (e)BΓI = IΓ(e)B;
(iv): (e)BΓI = IΓ(e)L;
(v): (e)BΓI = IΓe;
(vi): (e)RΓI = IΓ(e)B;
(vii): (e)RΓI = IΓ(e)L;
(viii): (e)RΓI = IΓe;
(ix): eΓI = IΓ(e)B;
(x): eΓI = IΓ(e)L.

Proof. (i) ⇒ (ii). It is obvious. Furthermore, the equivalence of (ii) to (x) can be shown
similar to the equivalence of (i) and (v) to (x) in the proof of Theorem 2.2.
(ii)⇒ (i). Suppose s ∈ S. As S is regular, there exists x ∈ S such that s = sγ1xγ2s and
xγ1s is idempotent for γ1, γ2 ∈ Γ. It follows that sΓI = (sγ1xγ2s)ΓI = sΓ((xγ3s)ΓI) =
sΓ(IΓ(xγ4s)) = (sΓIΓx)γ5s ⊆ IΓs. In a similar fashion, we can show the reverse inclu-
sion relation IΓs ⊆ sΓI for all γ1, γ2, γ3, γ4, γ5 ∈ Γ. Consequently, we obtain sΓI = IΓs
for all s ∈ S.

Proposition 2.2. Suppose I is any normal Γ-ideal of S. Then, we have that sΓI is a
Γ-ideal of S for any s ∈ S.
Proof. Suppose I is a normal Γ-ideal of S and s ∈ S. Then, it follows that (sΓI)ΓS =
sΓ(IΓS) ⊆ sΓI and SΓ(sΓI) = SΓ(IΓs) = (SΓI)Γs ⊆ IΓs. Hence, sΓI is a Γ-ideal of S.

We will need the following analogue in the context of Γ-semigroup of a famous result
of Lajos [7] that the product of a bi-ideal and a nonempty subset of a semigroup is also a
bi-ideal of the semigroup.

Theorem 2.4. [5] The product of a bi-ideal and a nonempty subset of a semigroup S is
also a bi-ideal of S.

Theorem 2.5. Any minimal Γ-ideal of a Γ-semigroup S is a zero element of B(S).
Proof. Suppose I is a minimal Γ-ideal of S. Then it is obvious that I ∈ B(S). Suppose
B is any bi-Γ-ideal of S. Then, we obtain BΓI ⊆ SΓI ⊆ I. Therefore, by Γ-semigroup
analogue of Theorem 2.4 and the minimality of I, we have BΓI = I. In a similar fashion,
we can show that IΓB = I for all B ∈ B(S).

Theorem 2.6. Any minimal normal Γ-ideal of a Γ-semigroup S is a Γ-group.
Proof. Suppose I is a minimal normal Γ-ideal of a Γ-semigroup S and s ∈ S. Then, we
obtain IΓs = sΓI ⊆ SΓI ⊆ I. So, by Proposition 2.2 and the minimality of I, we obtain
IΓs = sΓI = I. This shows that IΓs = sΓI = I for all s ∈ S. Hence, I is a Γ-group.

Theorem 2.7. The following conditions based on a Γ-semigroup S are equivalent:

(i): S is normal
(ii): BΓS = SΓB for all B ∈ B(S);
(iii): (s)BΓS = SΓ(s)B for all s ∈ S;
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(iv): (s)BΓS = SΓ(s)L for all s ∈ S;
(v): (s)BΓS = SΓs for all s ∈ S;
(vi): (s)RΓS = SΓ(s)B for all s ∈ S;
(vii): (x)RΓS = SΓ(s)L for all s ∈ S;
(viii): (s)RΓS = SΓs for all s ∈ S;
(ix): sΓS = SΓ(s)B for all s ∈ S;
(x): sΓS = SΓ(s)L for all s ∈ S;
(xi): B(S) is normal;
(xii): (s)BΓB(S) = B(S)Γ(s)B for all s ∈ S;
(xiii): (s)BΓB(S) = B(S)Γ(s)L for all s ∈ S;
(xiv): (s)BΓB(S) = B(S)Γs for all s ∈ S;
(xv): (s)RΓB(S) = B(S)Γ(s)B for all s ∈ S;
(xvi): (s)RΓB(S) = B(S)Γ(s)L for all s ∈ S;
(xvii): (s)RΓB(S) = B(S)Γs for all s ∈ S;
(xviii): sΓB(S) = B(S)Γ(s)B for all s ∈ S;
(xix): sΓB(S) = B(S)Γ(s)L for all s ∈ S;
(xxx): sΓB(S) = B(S)Γs for all s ∈ S.

Proof. As the Γ-semigroup S is a Γ-ideal of itself, we obtain that from (i) to (x) are
equivalent by Theorem 2.1.
(i)⇒ (xi) Suppose (i) is true, then, we show (xi). Suppose I and B are any two bi-Γ-ideals
of S and x ∈ I. Therefore, we have xΓB ⊆ xΓS = SΓx ⊆ SΓI ⊆ B(S)ΓI and hence,
IΓB(S) ⊆ B(S)ΓI. In a similar fashion, we can show that the reverse inclusion is true.
Therefore, we have that IΓB(S) = B(S)ΓI for all I ∈ B(S) and also that B(S) is normal.
(xi)⇒ (xii). It is straightforward.
(xii) ⇒ (i). Suppose s ∈ S. Then, for some I ∈ B(S), we obtain sΓS ⊆ (s)BΓS =
IΓ(s)B ⊆ SΓ(s)B ⊆ SΓs. In a similar fashion, we can see that the reverse inclusion
relation is true. Therefore, S is normal. The remaining part of the proof is straightforward.

Corollary 2.1. Every one-sided Γ-ideal of a normal Γ-semigroup S is a Γ-ideal of S.
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