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ON SUPER (a,d)-EAT VALUATION OF SUBDIVIDED CATERPILLAR

A. RAHEEM!, M. JAVAID?, M. A. UMAR?, G. C. LAU%,§

ABSTRACT. Let G = (V(G), E(GQ)) be a graph with v = |V(G)| vertices and e = |E(G)]
edges. A bijective function A : V(G) U E(G) + {1,2,...,v + e} is called an (a,d)-
edge antimagic total (EAT) labeling(valuation) if the weight of all the edges {w(zy) :
zy € E(G)} form an arithmetic sequence starting with first term @ and having common
difference d, where w(zy) = A(z) + AM(y) + Mzy). And, if A(V) = {1,2,...,v} then G
is super (a, d)-edge antimagic total(EAT) graph. In this paper, we determine the super
(a,d)-edge antimagic total (EAT) labeling of the subdivided caterpillar for different values
of the parameter d.
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AMS Subject Classification: 05C78

1. INTRODUCTION AND PRELIMINARIES

Throughout in this paper, all graphs are simple, finite, and undirected. The graph G
has the vertex-set V(G) and edge-set E(G). A general reference for graph-theoretic ideas
can be consult[23]. A labeling (or valuation) of a graph is a mapping that carries graph
elements to positive numbers. In this paper the domain will be the set of all vertices
and edges and such a labeling is called a total labeling. Some labeling use the vertex-
set only, or the edge-set only, and we shall call them vertex-labelings and edge-labelings
respectively. A number of classification studies on edge antimagic total graphs has been
intensively investigated. For further detail study on the antimagic labeling [13] a dynamic
survey of graph labeling. The subject of edge-magic total labeling of graphs has its origin
in the work of Kotzig and Rosa [16, 17], on what they called magic valuations of graphs.
The notion of super edge-magic total labeling was introduced by Enomoto et al. [8] and
they proposed following conjecture:
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Conjecture: Every tree admits a super edge-magic total labeling.

In the support of this conjecture, many authors have considered super edge-magic total
labeling for some particular classes of trees for example [3, 5, 10, 12, 14, 15, 20, 19]. How-
ever, this conjecture still remains open. Lee and Shah [18] have verified this conjecture
for trees on at most 17 vertices with a computer help. Kotzig and Rosa [16] proved that
every caterpillar is super edge-magic total. Sugeng et al.[22] proved some results related
to super (a,d)-edge antimagic total labeling of stars and caterpillars for different values
of the parameter d. Baca et al. [5] proved that disjoint union of caterpillars also admits
super (a,d)-edge antimagic total labeling. Baca et al. [4] presented that if a tree with
order greater or equal to 2 is super (a,d)-edge antimagic total then d must be less or
equal to 3. In the present paper we find the super (a,d)-edge antimagic total labeling on
subdivided caterpillar for d = {0, 1, 2}.

A graph G is called (a,d)-edge antimagic total ((a,d)-EAT) if there exist integers a >
0,d > 0 and a bijective mapping A : V(G) U E(G) «+ {1,2,...,v + e} such that W =
{w(zy) : zy € E(G)} forms an arithmetic sequence starting from a with common differ-
ence d, where w(zy) = A(x) + A(y) + A(zy). W is called the set of edge-weights of the
graph G. And, if \(V(G)) = {1,2,...,v} then G is super (a, d)-edge antimagic total graph.

In a caterpillar, if we subdivide the end edges then the resulting graph is called a subdivided
caterpillar. It is denoted by G = ( (a1, a2, 3, ..., o 1 1, 1), where aq = (my 1, mi2,m13,. ..
miy), e = (M2,1,M22,M23, .+, M)y -y O = (Mp 1, Mp2, M3, -, Mip 1)
The vertex-set and edge-set are defined as follow:
V(@) ={c:1<i<n}u{ay :1<i<n,1<pi, <mip,l<r<I}
and
E(G) ={cicip1:1<i<n—1}U{a]7ap ™ i1 <i<n,1<pi, <mip—1,1<r <1}
{aircizlgign,lgrgl}
O

2. MAIN RESULTS

Let us consider the following important Proposition that gives a necessary and sufficient
condition for a graph to be super (a,d)-EAT labeling.

Proposition 2.1. [4] If a (v, e)-graph G has a (s,d)-EAV labeling then

(1) G has a super (s +v+ 1,d + 1)-EAT labeling,
(77) G has a super (s + v + e,d — 1)-EAT labeling.

]
Theorem 2.1. The graph G = ((aq, ag, a3, ...,y : n,5) is a super (a,0)-EAT labeling
with @ = 2v + s — 1 and super (a,2)-EAT labeling with a = v + s + 1, where m > 3
and m = 1(mod 2), n > 2,1 = 5,a1 = (m,m,m,m,2m) and ay = ag = -+ = q, =
(2m,2m—1,m—1,m,2m), s = 3m+2)+(4m—1)[ 5] +4m([5] —1)+2 and v = [V(G)].

Proof. Let us denote v = |V(G)| and e = |E(G)| then v = 8mn—2m—n+2and e = v—1.
The vertex-set and edge-set of the graph G as following;:
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V(G):{CIIS’LSTL}U{QPZ’T1§Z§n71§pwgmw’1§7a§5}

2T
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E(G) = {cicip1:1<i<n—1}U{alra? 1 <i<n,1<pir <my —1,1<r <5}
{ailrcizlgign,1§7"§5}

Now, we define the labeling A : V' — {1,2,...,v} as follows:
Throughout the labeling we will consider

a=8m—1 and

n=0Bm+2)+@m-1)[5] +4m([5] - 1)

n+m

Aei) = n+ 26 —3)+ (9m — 1)

(i —2) + (5m +2)

Wheni=1land1<r <35
for p1,=1,3,5,...,m1,

)

AMu) =

and for p1,, = 2,4,6,...,my, —

AMu) =

p1,1+1
2
(m+2) — 22tl
2
p1,3+1
(m+1)+ 55

(2m+3) — Léﬂ

P15+l

(3(m+1) — Rt-
1;

0+
n+m— 55
n+m+ 242
p1,
n+2m— 5

p1,
7+ @Bm—1) -5

When i =evenand 1 <r <5:

For p;, = 1,3,5,...,m4

n+a(F2)+@Bm—1)+
4o (552) 4 5m - 25t
AMu)=n+a(52)+(B5m—1)+
N+ (52) +6m — Pt
n+ao(52)+7 pi’zﬂ

and for p;, =2,4,6,...,m;, — 1
a(52) + (Bm+2)+
a(52) + (5m+2) —
Mu) =S a(52) + (5Bm+2) +
a () + (6m+2) —
\a(%)+(7m+2)—

pi,1+1
2

pi,3tl
2

fori=1
for ¢ > 3,0dd

for ¢ = even

for u = a}ﬁ’l,
for u = a110712,2’
for u = azlilzf,
for u = alff,

_ P15
for u=a; 3,

for u = all)’ll’l,
for u = a’f};,
for u = azl)}ég,
for u = azl);f,

P15
for u=a; 5,

for u = aff’f,
for u = all)f’;,
for u = afff,
for u = alljff,

_ Dis
for u = ars,

for u = azlof’f,
for u = all)f’;,
for u = a?ff,
for u = ajlof;f,

_ Dis
foru=ay7y,
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When¢>3andoddand 1 <r <5
For p;» = 1,3,5,...,m;

%4(%)—1—(77)1—1—1)—1—% foru:aﬁof’f,
Q@ (%) + (9m+2) — % for u = a]fff,
AMu)=qa(53) + (Om+1) + % for u = azljfgf’,
@ (%) + (10m + 2) — % for u = all)f;f,
(o (%) + (11lm +2) — piLQH for u = a]fff,
and for p;, =2,4,6,...,m;, — 1
77+O¢(%)+(7m—1)+p31 foru:azl’f’ll,
n+a(?)+(9m—1)—p§2 foru:alff’;,
AMu)=dn+a(52) +(9m—1)+ 22 foru:aff:’f,
n+a(52) + (10m —1) — 22 foru:all)f;f,
n+a(%)+(11m—1)—p35 foru:aszf,

The set of all edge-sums generated by the above scheme of labeling forms a consecutive
integer sequence s = (n+ 1)+ 1,(n+ 1)+ 2,...,(n+ 1) + e. Therefore, by Proposition
2.1, X\ can be extended to a super (a,0)-EAT labeling and obtain the magic constant
a=2v+s—1=n+ 16mn — 4m — 2n + 5. Similarly, by the Proposition 2.1, A can be
extended to a super (a,2)-EAT labeling and obtain the magic constant a = v+ 1+ s =
n+8mn —2m —n+5. O
Theorem 2.2. The graph G = ((a1,a2,a3,...,a, @ n,5) is a super (a,1)-EAT la-
beling with a = s + %v if v is even, where m > 3 and m = 1(mod 2), n > 2,1 =
5,a;7 = (mym,m,m,2m) and ag = a3 = -+ = ap, = (2m,2m — 1,m — 1,m,2m — 1),
s=Bm+2)+ @m—-1)[5] +4m([5] —1)+2and v = [V(G)|.

Proof. Let us suppose v = |[V(G)| and e = |E(G)| then v = 8mn — 2m — n + 2 and
e =v — 1. We denote the vertex and edge sets of G as follows:

V(G) ={e:1<i<npufaly s1<i<n 1 <piy <mip, 1 <7 <5}

E(G) ={ciciy1 : 1 §i§n—1}u{afﬁaff“ 1 <i<n,1<p;<my —1,1<r <5}
{a%rcizlgign,lgrgﬂ
Now we define the labeling A : V(G) U E(G) — {1,2,...,v + e} as in theorem 2.1.

It follows that the edge-weights of all edges of G constitute an arithmetic sequence
s=Mm+1)+1,(n+1)+2,...,(n+ 1) + e, with common difference 1. We denote it
by A = {a; : 1 <i <e}. Now for G we complete the edge labeling A for super (a,1)-
edge antimagic total labeling with values in the arithmetic sequence v+ 1,v+2,...,v+e€
with common difference 1. Let us denote it by B = {b; : 1 < j < e}. Define C =
{agi—1+be—it1:1<i < %}U{agj +b%—j+1 1< < %—1}. It is easy to see that C

constitute an arithmetic sequence with d = 1 and a = s+ 3v = n+2432(8mn—2m—n+2).
Since all vertices receive the smallest labels so A is a super (a,1)-edge antimagic total
labeling. O
Theorem 2.3. The graph G = ((a1, ag, a3, ...,y 1 n,5) is a super (a,0)-EAT labeling
with @ = 2v + s — 1 and super (a,2)-EAT labeling with a = v + s + 1, where m > 3
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and m = 1(mod 2), n > 2,1 = 5,1 = (m,m,m,m,2m,4m) and g = a3 = -+- = a, =
(2m,2m—1,m—1,m,2m,4m), s = (5m+2)+8m—1)| 5] +8m([§]—1)+2and v = [V (G)].

Proof. Let us suppose v = |V(G)| and e = |E(G)| then v = 16mn — 6m — n + 2 and
e =v — 1. We denote the vertex and edge sets of G as follows:

V(G)={ci:1<i<n}uU{ad":1<i<n,1<p; <my,1<r<5}

E(G) ={ciciq1:1<i<n—13yU{a]ra]"" 11 <i<n,1 <py <myr —1,1 <7 <5}
{aircizlgzgn,lgrgf)}
Now, we define the labeling A : V(G) — {1,2,...,v} as follows:

a=16m —1 and
= (5m+2)+ 8m—-1)[ 5] +8m([5] - 1)

n+m fori=1
i) = n+ S —3)+ (17m — 1) for i > 3,0dd
S$(i—2)+ (9m+2) for ¢ = even

Wheni=1and1<r<6
for p1,=1,3,5,...,m1,

L’EH for u = azflll,
(m +2) — 22t 2+1 for u = aﬁ’};,
UUD /At M
u) =
(2m +3) — 2 ‘;Ll for u = ay’;’,
3(m+1) — L"ZH for u = a’f};,
(bm +3) — Lg“ for u = af'y’,
and for p1, = 2,4,6,...,m1, — 1;
n+ 5t foru:azl)lll,
n+m— 22 foru:azl’lf,
12 f . p13
Au) = n+m+ %2 oru=as,
?7+2m—m74 foru:a]flf,
n+@Bm-—1)- 52 for u = azl)};,
7+ (5rm — 1) — B¢ for u = azl)}é(s,
Wheni=evenand 1 <r <6
for pir =1,3,5,...,m;, :
n+a(52)+ (5m—1)+ p“;rl for u = af'y,
n+a(52) + 9m — 22t for u = af'y,
Au) 77"‘04(%)4‘(97”—1)4-% foru:afiég,
u) = , :
0t a(i5) + 10m — Pegt for u = al'y,
N+« (%) +11m — L’Zﬂ for u = a?;’,
n+a(%)+13m7% foru—a?;,
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and for Dir = 2,4,6, ceey Mgy — 1

04(1:_72)+(5m+2)+p’:2’1 foru:af’f,

a(%)+(9m+2)—p;’2 foru:alf:’;,

Au) o (52) + (Im+2)+ 22 for u = aly,

u) = , . ,

o (F2) + (10m +2) - 5t foru=ayy,

a(%) + (11m + 2) pg‘” foru:aﬁg:;,

(o (558 + (1Bm +2) =52 for u=a,

When 7 >3 o0dd 1 <7 <6:andfor p;, =1,3,5,...,m;,

a (55 + (1Bm+ 1) + P57 foru=aly,
a(52) + (17m + 2) %;1 for u = aﬁ’f’;,
O LY B R

u) = . ) 1
a(g2) + (18m+2) = Bt oru = apy,
a (50 +(19m+2) =52 foru=ayy,
a () +@m+2) - Pg= foru=ay,

and for p;, =2,4,6,...,m;, — 1

77'1‘04(1:_73)4-(13771—1)—1—%1 foru:azfj’ll,
n+a(52) + (17m—1) - &2 for u = af’y,
AMuy =1 (2°) +(ATm -1+ 5 foru=ayy,
n+a(P)+18m -t for u = ay'y',
n+a(52) + (19m — 1) — B2 for u = al’y,
n+a(52)+ (2lm—1) — B¢ for u = a}’y,

The set of all edge-sums generated by the above labeling scheme forms a consecutive
integer sequence s = (n+ 1)+ 1;(n+1)+2,...,(n+ 1) + e. Therefore, by Proposition
2.1, A can be extended to a super (a,0)-EAT labeling and we obtain the magic constant
a=2v+s—1=n+32mn — 12m — 2n + 5. Similarly, by Proposition 2.1, A can be
extended to a super (a,2)-EAT labeling and we obtain the magic constant a = v+1+s =

n+ 16mn — 6m —n + 5. U
Theorem 2.4. The graph G = ((a1,a2,a3,...,a, : n,5) is a super (a,1)-EAT la-
beling with a = s + %v if v is even, where m > 3 and m = 1(mod 2), n > 2,1 =
5,a; = (m,m,m,m,2m,4m) and ag = ag = --- = a, = (2m,2m — 1,m — 1,m, 2m, 4m),

s=((5m+2)+8m—1)[5] +8m([§] —1)+2and v = [V(G)|.

Proof. Let us consider v = |[V(G)| and e = |E(G)| then v = 16mn — 6m — n + 2 and
e = v — 1. We denote the vertex and edge sets of GG as follows:

V(G)={ci:1<i<n}uU{ad":1<i<n,1<p; <my,1<r<5}

E(G):{ciciﬂ:1§i§n—1}U{af7fTaZfT“:1§i§n,1§p¢r§mw—1,1§r§5}
{a%rcizlgign,1§r§5}

Now we define the labeling A : V(G) U E(G) — {1,2,...,v + e} as in theorem 2.3.
It follows that the edge-weights of all edges of G constitute an arithmetic sequence s =
m+1)+1,(n+1)+2,...,(n+ 1) + e, with common difference 1. We denote it by
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A ={a; : 1 <i<e}. Now for G we complete the edge labeling A for super (a,1)-edge
antimagic total labeling with values in the arithmetic sequence v + 1,v 4+ 2,...,v + e
with common difference 1. Let us denote it by B = {b; : 1 < j < e}. Define C =
{agi—1+be—it1:1<i < %}U{agj +be;71_j+1 1< < %—1}. It is easy to see that C
constitute an arithmetic sequence with d = 1 and a = s+%v = n+2+%(16mn—6m—n+2).
Since all vertices receive the smallest labels so A is a super (a,1)-edge antimagic total
labeling. O
Theorem 2.5. The graph G = ((a1,a2,a3,...,ay : n,l) is a super (a,0)-EAT la-
beling with a = 2v + s — 1 and super (a,2)-EAT labeling with a = v + s + 1, where
m > 3 and m = 1(mod 2), n > 2,l = 5,a17 = (m,m,m,m,ms,...,my) and ag =

l
az = - = ap = (my,m; — Lm — Lmyms,...,my), s = [ S [m2P5] +2m+2| +
p=>5

l

(21) [m2P=5] +m — 1+ m21—4> 2] + (Z [m2P=°] + m + m2l—4> ([21-1)+2, my=

p=5 p=>5
m2P=> for 5 < p <l and v = |V(G)|.

Proof. Let us consider v = |V(G)|,e = |E(G)| then v = (2mn 4+ 2m —n + 2) + m(n —

!
12173 4+ n > [m2P~4] and e = v — 1. We denote the vertex and edge sets of G as follows:
p=>

V(G)={ci:1<i<n}uU{ad":1<i<n,1<p; <my,1<r<5}

E(G):{ciciH:1§i§n—1}u{af7fraf7fr“:1§i§n,1§pw§mir—1,1§T§5}
{a%rcizlgign,lgrgfé}

Now, we define the labeling A : V(G) — {1,2,...,v} as follows:
Throughout the labeling we will consider
l
a= > [m2P~5 4+ 2]+ 2m + 2,
p=>5

l
b= Y [m2P 5 +m — 1 +m2=4,
p=>5
l
c= > [m2P7%] + m + m2!4,

p=>5
!
d= > [m2P75] +2m —1,
p=>5
!
a= Y [m2P~4 + m2=3 4+ 5m — 1,
p=>5

n=a+blg]+c([n2]—1)

n+m fori=1
Me) =qn+ 5 =3)+(m2™ +ctd)  fori>3,0dd
i —2) + (m— 1)25—4 +a for i = even
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When ¢ = 1:
for p1, =1,3,5,...,my,, where r =1,2,3,4 and 5 < r <[, we define
L’l;l for u = al}',
Au) = (m+2)— L’gﬂ for u = aﬁ’lf,
(m+1)+ L";—H for u = a110133,
(2m+3) — % for u = ay’y’,

/\(afir) (2m + 3) + Z [m2k—?] — Bz ""H respectively and for py, = 2,4,6,...,my, — 1,

)

where where r = 1,2, 3 4 and 5 < r <[, we define

n+ 54 for u = aflll,
A) — 7]+m B2 foru—aflzz,
('LL)— + +p13 fI‘ _ D13
n+m+ 52 oru=a;,
n+2m— 252 foru—azflf,

)\(apl r) =17 + 2 — 1 + Z [ka 5] Z% I‘eSpeCtiVely'
k=5
When 7 =even

for p;r =1,3,5,...,m;,; where r =1,2,3,4 and 5 < r <[, we define

77+oz(i52)+d+pi’12+1 foru:asz’f,
n+o(52)+d+m2-t4+1- p”“ foru:azfi’;,
Alu) = i—2 I—4 p3+1 Pi3
7]+a(17)+d+m2 + & for u =ayly,
n+a(52) +d+m+m2i- 4+4 pi";rl foru—azfjf,
T
)\(ap”)—n—l—oz( 2) + Y [m2F ) +d+m+m2-t+1— p”+ respectively.
k=5
and for p;, =2,4,6,...,m;, —1; where r =1,2,3,4 and 5 <r <, we define
a—l—oz(%)%—p;’l for u = aby’,
c+a(%)+(m+2)—p;’2 foru—a?;,
Au) = c+a(%)+(m+2)+p§%’ for u = af'y,
c+.04 (%) +2(m+1)— p;4 for u = azlhf,
a(52) + (1lm+2) — &8 foru-a}f;,
o (52) + (13m +2) — B¢ foru—alf’(f,

s
Maiy") = c+a(552) + (2m+) + 3 [m257%] — B3~ respectively.
’ k=5

When ¢ > 3 odd: and for p;, = 1,3,5,...,m;,, where r = 1,2,3,4 and 5 < r < [, we
define

a+b)+a(52)+(13m+1)+ 21 or u=a,7y,

b = 13m + 1) 4 Zett! f T

Aw) (a+b)+a(%)+m2l—4+1 p”H foru—a‘f’;,
u) =

(a+0b)+a(52) ++m2- 4+p13+1 foru—af’;’,

a+b)+a(=2 +m+1+m2l_4—p"*4+1 for u = a?!,

2 2 1,4
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2,

) T
Aals") = (a+b) +a (52) + ];5[m2k_5] + (m + 4) +m2=* — 2t yegpectively.
and for p;, = 2,4,6,...,m;, —_1, where r =1,2,3,4 and 5 < r <[, we define

C+d +77+Oé i=3 —l—pi’l foru:api’I’

2 2 1,1

c+d)+n+a« i3 —|—m21_4—pi—*2 foru:a,pi’z7

( n 2 2 1,2

Alu) = i—3 -4 | Pi3 pi3

(C+d)+77+04(17)+m2 —|—% foru:aljé”
(c+d)+n+a(52)+m2-t+m— B4 textfor u = afff,

)\(QZZ:T) =(c+d)+n+a(F)+ kz5[m2k_5] +m+m2!7* — 25 respectively.
The set of all edge-sums generated by the above labeling scheme forms a consecutive
integer sequence s = (n+1)+1,(n+1)+2,...,(n+ 1) + e. Therefore, by Proposition

2.1, A can be extended to a super (a,0)-EAT labeling and obtain the magic constant

a=2v+s—1=n+1+22mn+2m—-n+2)+m(n—12"2+n Zl: [m2P~3]. Similarly,by
Proposition 2.1, A can be extended to a super (a, 2)-EAT labeling Z:fd we obtain the magic
constant a =v+1+s=n+3+2mn+2m—n+2)+mn—1)2""3 +n zl:[m2p*4]. O
Theorem 2.6. The graph G = ((a1,a9,a3,...,q, : n,l) is a super (62215)—EAT label-
ing with a = s + %v if v is even, where m > 3 and m = 1(mod 2), n > 2,1l = 5,1 =

(m,m,m,m,ms,...,my) and g = ag = -+ = a, = (m,m—1,m—1,m,ms,...,my), s =
l l l
<Z[m2p—5] +2m + 2 +<Z [m2P=5] +m — 1 +m2l—4> 2]+ ( 3 [m2r) +m+m2l_4> (12
p=>5 p=>5 p=>5

2, my,= m2PS for 5<p<land v = V(G)I.

Proof. Let us suppose v = |V(G)| and e = |E(G)| then v = (2mn+2m —n+2) + m(n —

l
1272 4 n > [m2P~4) and e = v — 1. We denote the vertex and edge sets of G' as follows:
p=>5

V@) ={ci:1<i<n}u{ad™:1<i<n,1<p; <my,1<r<5}

E(G):{ciciﬂ:1§i§n—1}u{afﬁaff“:1§i§n,1§pi,n§mir—l,1§r§5}
{a%rcizlgign,lgrgﬂ

Now, we define the labeling A : V(G)UE(G) — {1,2,...,v+e} as in theorem 2.5. It follows
that the edge-weights of all edges of G constitute an arithmetic sequence s = (n + 1) +
1, (n+1)+2,...,(n+1)+e, with common difference 1. We denote it by A =|a; : 1 < i < e|.
Now for G we complete the edge labeling A for super (a, 1)-edge antimagic total labeling
with values in the arithmetic sequence v+1,v+2,...,v+e with common difference 1. Let
us denote it by B = {b; : 1 < j < e}. Define C = {agi—1 + be—it1: 1 <i < e;—l} U {az; +

1 <j< eg—l —1}. Tt is easy to see that C' constitute an arithmetic sequence with

bec1_;

l
d=landa=s+3v=n+2+3|2mn+2m—n+2)+m(n—1)2"3+n Z[me_ﬂ) .
p=>
Since all vertices receive the smallest labels so A is a super (a,1)-edge antimagic total
labeling. O

- 1)+
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3. CONCLUSION

In this paper, we have proved the super (a,d)-EAT labeling of the subdivided caterpillar
G = ((aq,a9,a3,...,ay :n,l),. However, the problem for super (a,d)-EAT labeling is still
open for oy # g #, ..., # «, different values of magic constant.

1]
2]

3]

(4]
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