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STATUS CONNECTIVITY INDICES OF CARTESIAN PRODUCT OF

GRAPHS

P. KANDAN, §

Abstract. In this paper, we establish one of the recent topological indices called the
first status connectivity index S1(G) =

∑
uv∈E(G)

[σG(u) + σG(v)] and second status con-

nectivity index S2(G) =
∑

uv∈E(G)

[σG(u)σG(v)] of Cartesian product of two simple graphs

are determined. Also these indices are computed for nanotube, nanotorus, grid and
cartesian product of complete graphs.

Keywords: Distance in graph, status connectivity indices, Cartesian product, Molecular
graph.
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1. Introduction

Graph theory has successfully provided chemists with a variety of useful tools [4, 9,
11, 12], among which are the topological indices. In theoretical chemistry, assigning a
numerical value to the molecular structure that will closely correlate with the physical
quantities and activities. Molecular structure descriptors (also called topological indices)
are used for modeling physicochemical, pharmacologic, toxicologic, biological and other
properties of chemical compounds. Many of these descriptors are defined in terms of
degrees and distance of a graph (for details see [14, 8, 30, 15, 32, 23, 24]). The oldest well
known distance based graph parameter is the Wiener index which was used to study the
chemical properties of parafins [31]. Recently, Ramane and Yalnaik [27], introduced the
status connectivity indices based on the distances and correlated it with the boiling point
of benzenoid hydrocarbons. In this extension [28], Ramane et al. defined status co-indices
and obtained the relations between status connectivity indices and status co-indices. Also
they computed these indices for intersection graph, hypercube, Kneser graph and achiral
polyhex nanotorus. Adiga et al. [1] defined degree status connectivity index and obtained
its value for certain standard graphs. Recently, many authors studied various topological
indices using different products of graphs such as cartesian product, lexicographic product,
strong product and corona of two graphs. For details see[26, 33, 29, 25]. To this continuity
in this paper we obtain the status connectivity indices for Cartesian product of connected
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graphs. Further we compute these status indices for C4− nanotube, C4− nanotorus, grid
and cartesian product of complete graphs. Let G = (V (G), E(G)) be graph with vertex
set V (G) and edge set E(G). The distance between the vertices u and v is the length of
the shortest path joining u and v and is denoted by dG(u, v). All the graphs considered in
this paper are simple and connected.

The status of a vertex u ∈ V (G), denoted by σG(u) is defined as[16],

σG(u) =
∑

v∈V (G)

dG(u, v).

The Wiener index W (G) of a connected graph G is defined as [31],

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) = 1
2

∑
u∈V (G)

σG(u).

The first Zagreb index and second Zagreb index are defined as [10]

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)) and M2(G) =
∑

uv∈E(G)

(dG(u)dG(v)).

where dG(u) denote the degree of the vertex u in G. The Zagreb indices are found to have
appilications in QSPR and QSAR studies as well, see [7]. For more results on the Zagreb
indices see [5, 13, 19].

The eccentric connectivity indices of a connected graph G are defined as [2]

ξ1(G) =
∑

uv∈E(G)

(eG(u) + eG(v)) and ξ2(G) =
∑

uv∈E(G)

(eG(u)eG(v)),

where eG(u) = max{d(u, v)|v ∈ V (G)}. Details of its applications can be found in [3, 6, 18].
Motivated by these indices, Ramane and Yalnaik [27] introduced first status connectivity
index S1(G) and second status connectivity index S2(G) of a connected graph G as:

S1(G) =
∑

uv∈E(G)

[σG(u) + σG(v)] and S2(G) =
∑

uv∈E(G)

[σG(u)σG(v)].

Also they observed the status connectivity indices has good correlation with the boiling point
of benzenoid hydrocarbons. In fact, one can rewrite the first status connectivity index as

S1(G) =
∑

u∈V (G)

d(u)σG(u).

Graph operations play an important role in the study of graph decompositions into iso-
morphic subgraphs. It is well known that many graphs arise from simpler graphs via
various graph operations and one can study the properties of smaller graphs and deriving
with it some information about larger graphs. Hence it is important to understand how
certain invariants of such product graphs are related to the corresponding invariants of
the original graphs. One of the most studied graph product is Cartesian product. Vari-
ous topological indices are studied using Cartesian product of graphs see [17, 20, 21, 22].
The Cartesian product of G and H is a graph, denoted by G�H, with the vertex set
V (G�H) {(u, v)|u ∈ V (G), v ∈ V (H)} and (u, x)(v, y) is an edge of G�H if u = v and
xy ∈ E(H) or, uv ∈ E(G) and x = y, For example see Figure.1. For the convenience, let
V (G) = {u1, u2, . . . , un1} and let V (H) = {v1, v2, . . . , vn2} and any r−th vertex in a graph
G�H, is denoted by xr = {ur, vr}.

2. Status connectivity indices of Cartesian product of graphs

From the structure of the Cartesian product G and H, one can easily observe the fol-
lowing lemma and corollary.

Lemma 2.1. Let G and H be two connected graph with n1 and n2 vertices, respectively.
Then the status of any vertex xr ∈ V (G�H) is n2σG(ur) + n1σH(vr).
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Proof. For any vertex xr ∈ V (G�H), one can easily observe from the structure of G�H,
that

σG�H(xr) =
∑

zs∈V (G�H))

d(xr, zs)

=

n1∑
i=1

n2∑
j=1

[d(ur, ui) + d(vr, vj)]

= n2

n1∑
i=1

d(ur, ui) + n1

n2∑
j=1

d(vr, vj)

= n2σG(ur) + n1σH(vr)

�

Theorem 2.1. Let G and H be two connected graphs with n1 and n2 vertices, respectively.
Then S1(G�H) = n22S1(G) + 4n1m1W (H) + 4n2m2W (G) + n21S1(H).
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Proof. From the definition of first status connectivity index, we have

S1(G�H) =
∑

xr∈V (G�H)

d(xr)σG�H(xr)

=
∑

ur∈V (G)
vr∈V (H)

(dG(ur) + dH(vr))(n2σG(ur) + n1σH(vr))

since dG�H(.) = dG(.) + dH(.) and using lemma 2.1

= n2
∑

ur∈V (G)
vr∈V (H)

dG(ur)σG(ur) + n1
∑

ur∈V (G)
vr∈V (H)

dG(ur)σH(vr)

+n2
∑

ur∈V (G)
vr∈V (H)

dH(vr)σG(ur) + n1
∑

ur∈V (G)
vr∈V (H)

dH(vr)σH(vr)

= n22
∑

ur∈V (G)

dG(ur)σG(ur) + n1
∑

ur∈V (G)

dG(ur)
∑

vr∈V (H)

σH(vr)

+n2
∑

vr∈V (H)

dH(vr)
∑

ur∈V (G)

σG(ur) + n21
∑

vr∈V (H)

dH(vr)σH(vr)

= n22S1(G) + n1(2m1)
∑

vr∈V (H)

σH(vr)

+n2(2m2)
∑

ur∈V (G)

σG(ur) + n21S1(H)

= n22S1(G) + 4n1m1W (H) + 4n2m2W (G) + n21S1(H)

�

Now, to obtain the second status connectivity index of Cartesian product of graphs, the
procedure is as follows.

Theorem 2.2. Let G and H be two connected graphs with n1,n2 vertices, respectively.
Then S2(G�H) = n32S2(G) + 2n1n2S1(G)W (H) + n21m1

∑
vr∈V (H)

σ2H(vr) + n31S2(H) +

2n1n2S1(H)W (G) + n22m2
∑

ur∈V (G)

σ2G(ur).
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Proof. From the definition of second status connectivity index, we have

S2(G�H) =
∑

xryr∈E(G�H)

σG�H(xr)σG�H(yr)

=

n2∑
k=1

uiuj∈E(G), vk∈V (H)

(n2σG(ui) + n1σH(vk))(n2σG(uj) + n1σH(vk))

+

n1∑
s=1

vivj∈E(H), us∈V (G)

(n2σG(us) + n1σH(vi))(n2σG(us) + n1σH(vj))

since by lemma 2.1

=

n2∑
k=1

uiuj∈E(G),vk∈V (H)

n22σG(ui)σG(uj)

+

n2∑
k=1

uiuj∈E(G), vk∈V (H)

n1n2σG(ui)σH(vk)

+

n2∑
k=1

uiuj∈E(G), vk∈V (H)

n1n2σG(uj)σH(vk) +

n2∑
k=1

uiuj∈E(G), vk∈V (H)

n21σ
2
H(vk)

+

n1∑
s=1

vivj∈E(H), us∈V (G)

n21σH(vi)σH(vj)

+

n1∑
s=1

vivj∈E(H), us∈V (G)

n1n2σG(us)σH(vi)

+

n1∑
s=1

vivj∈E(H), us∈V (G)

n1n2σG(us)σH(vj) +

n1∑
s=1

vivj∈E(H), us∈V (G)

n22σ
2
G(us)

= n32S2(G) + 2n1n2S1(G)W (H) + n21m1

∑
vr∈V (H)

σ2H(vr) + n31S2(H)

+ 2n1n2S1(H)W (G) + n22m2

∑
ur∈V (G)

σ2G(ur).

Since by the definition of first connectivity, second connectivity and Wiener index of
graph. �

Theorem 2.3. [27] Let G be a connected graph with n vertices and m edges and diam(G) ≤
2. Then S1(G) = 4m(n− 1)−M1(G) and S2(G) = 4m(n− 1)2− 2(n− 1)M1(G) +M2(G).

The proof of the following corollaries are the direct consequence of Theorems 2.1 to 2.3.

Corollary 2.1. Let G and H be a connected graph on n1 and n2 vertices and m1 and m2

edges, respectively. Let diam(G) ≤ 2 and diam(H) ≤ 2. Then S1(G�H) = 4m1n
2
2(n1 −

1)−n22M1(G)+4n1m1W (H)+4n2m2W (G)+4m2n
2
1(n2−1)−n21M1(H) and S2(G�H) =

n32(4m1(n1−1)2+M2(G)) + n31(4m2(n2−1)2+M2(H))+8n1n2(m1(n1−1)W (H)+m2(n2−
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1)W (G)) + n21m1
∑

vr∈V (H)

σ2H(vr) + n22m2
∑

ur∈V (G)

σ2G(ur) − (2n31(n2 − 1)

+ 2n1n2W (G))M1(H)− (2n32(n1 − 1) + 2n1n2W (H))M1(G).

Corollary 2.2. Let G and H be a connected r− regular graph with n1 and n2 ver-
tices and m1 and m2 edges, respectively. Let diam(G) ≤ 2 and diam(H) ≤ 2. Then
S1(G�H) = 2m1n

2
2(2(n1−1)−r1)+4(n1m1W (H)+4n2m2W (G))+2m2n

2
1((n2−1)−r2)

and S2(G�H) = n32(4m1(n1− 1)2 +m1r
2
1) + n31(4m2(n2− 1)2 +m2r

2
2) + 8n1n2(m1(n1−

1)W (H)+m2(n2−1)W (G))+n21m1
∑

vr∈V (H)

σ2H(vr) + +n22m2
∑

ur∈V (G)

σ2G(ur) − 2(2n31(n2−

1) + 2n1n2W (G))m2r2 − 2(2n32(n1 − 1) + 2n1n2W (H))m1r1.

3. Examples

There are several molecular graphs that can be realized as a product of graphs, for
instance nanotorous as Cn�Cm, nanotubes as Pn�Cm, grid as Pn�Pm. In this section
we compute the first status connectivity index and second status connectivity index for such
molecular structures and Cartesian product of complete graphs. It is well known that for

path, cycle and complete graph the following indices are W (Pn) = n(n2−1)
6 ,

W (Cn) =

{
n3

8 n is even
n(n2−1)

8 n is odd.
, W (Kn) = n(n−1)

2 , S1(Pn) = n(n−1)(2n−1)
3 ,

S1(Cn) =

{
n3

2 n is even
n(n2−1)

2 n is odd
,S1(Kn) = n(n−1)2, S2(Pn) = (n−1)(n4−n2)

4 − n(n−1)(n3−n)
2 +

n(n−1)(2n−1)(2n2−1)
6 − n3(n−1)2

2 + 6(n−1)5+15(n−1)4+10(n−1)3−(n−1)
30 ,

S2(Cn) =

{
n5

16 n is even
n(n2−1)2

16 n- odd
and S2(Kn) = n(n−1)3

2 . Using these facts, in Theorems 2.2,

2.3 and Corollary 2.6, we obtain the following examples.
Example 3.1. Let Pk and Pl be a path on k and l vertex respectively, with k, l ≥ 2. Then

S1(Pk �Pl) = kl
3

(
(k − 1)(2(l2 + kl − 1)− l) + (l − 1)(2(k2 + kl − 1)− k)

)
and

S2(Pk �Pl) = l3( (k−1)(k
4−k2)

4 − k(k−1)(k3−k)
2 + k(k−1)(2k−1)(2k2−1)

6 − k3(k−1)2
2

+ 6(k−1)5+15(k−1)4+10(k−1)3−(k−1)
30 ) +

k2l2[(k−1)(2k−1)(l2−1)+(l−1)(2l−1)(k2−1)]
9

+ k2(k − 1)
∑

vr∈V (Pl)

σ2Pl
(vr) + k3( (l−1)(l

4−l2)
4 − l(l−1)(l3−l)

2 + l(l−1)(2l−1)(2l2−1)
6 − l3(l−1)2

2

+ 6(l−1)5+15(l−1)4+10(l−1)3−(l−1)
30 ) + l2(l − 1)

∑
ur∈V (Pk)

σ2Pk
(ur).

Example 3.2. Let Ck be a cycle with k ≥ 2 vertex and Pl be a path on l ≥ 2 vertex. Then

S1(Ck �Pl) =

lk
2
(
(2l−1)k

2 + (l−1)(4l+1)
3

)
, if k is even

lk
(
(2l−1)(k2−1)

2 + k(l−1)(4l+1)
3

)
, if k is odd

.

For even k
S2(Ck �Pl) = l3k5

16 + l2k4(l2−1)
6 + l2k4(l−1)(2l−1)

12 + k3
∑

vr∈V (Pl)

σ2Pl
(vr)

+ l2(l − 1)
∑

ur∈V (Ck)

σ2Ck
(ur) + k3[ (l−1)(l

4−l2)
4 − l(l−1)(l3−l)

2 + l(l−1)(2l−1)(2l2−1)
6 − l3(l−1)2

2

+ 6(l−1)5+15(l−1)4+10(l−1)3−(l−1)
30 ],

and for odd k



P. KANDAN: STATUS CONNECTIVITY INDICES OF CARTESIAN PRODUCT OF GRAPHS 753

S2(Ck �Pl) = l3k(k2−1)2
16 + l2k2(k2−1)(l−1)(4l+1)

12 +k3
∑

vr∈V (Pl)

σ2Pl
(vr)+l

2(l−1)
∑

ur∈V (Ck)

σ2Ck
(ur)

+ k3[ (l−1)(l
4−l2)

4 − l(l−1)(l3−l)
2 + l(l−1)(2l−1)(2l2−1)

6 − l3(l−1)2
2 + 6(l−1)5+15(l−1)4+10(l−1)3−(l−1)

30 ]

Example 3.3. Let Ck and Cl be a cycle on k and l vertex respectively, with k, l ≥ 3. Then

S1(Ck �Cl) =


kl(k + l)(kl − 1), if l,k are odd

kl 2
(
k(k + l)− 1

)
, if k is odd and l is even

(kl)2(k + l), if l,k are even

.

Example 3.4. Let Kk and Kl be a complete graph on k and l vertex respectively. Then
S1(Kk �Kl) = kl

(
l(k − 1)2 + k(l − 1)2 + (k − 1)(l − 1)(k + l)

)
and

S2(Kk �Kl) = 5kl
2

(
l2(k − 1)3 + k2(l − 1)3

)
− kl2(k − 1)2 (2k(k − 1) + k(l − 1))

− lk2(l − 1)2 (2k(l − 1) + l(k − 1)) + 2k2l2(k − 1)(l − 1)(k + l − 2)

+ k3(k−1)
2

∑
vr∈V (Kl)

σ2K−l(vr) + l3(l−1)
2

∑
ur∈V (Kk)

σ2Kk
(ur).
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