
TWMS J. App. Eng. Math. V.9, N.4, 2019, pp. 810-821

A MODIFICATION OF ARTIFICIAL BEE COLONY ALGORITHM

FOR SOLVING INITIAL VALUE PROBLEMS

K. GÜNEL1, İ. GÖR1, §

Abstract. In this paper, some improvements have been made on Artificial Bee Colony
(ABC) algorithm to get numerical solutions of both linear and nonlinear differential
equations as initial value problems. The solutions are obtained by a feed-forward neural
network trained by the modified ABC.

Keywords: Initial Value Problems, Ordinary Differential Equations, Global Optimiza-
tion, Artificial Bee Colony.

AMS Subject Classification: 68T20, 68T05, 65L05

1. Introduction

Artificial Neural Networks (ANNs) are effective tools for the solution of world problems.
There are many different implementation area for ANNs including solving Differential
Equations (DEs) numerically with ANNs. Differential Equations (DEs) are very crucial
branch of mathematics. The systems are modeled using DEs for solving real problems
in many disciplines. On the other hand, obtaining the solution of some special types of
differential equations, such as the motion equation of oscillating swing, may not be possible
in the continuous space, even knowing the existence of the solution. In order to encounter
this problem, numerical solutions of DEs are searched in the interval having specific nodes
in it. However the another problem arises in this case. The discrete solution occurs by
using numerical approaches. The solution is acquired only some nodes instead of at all
points in the interval. One of the method is interpolation in order to get the solution of
other points. But, in such a case, not only the error which is appeared using numerical
methods but also the error is emerged using interpolation. In last two decades, another
approach is presented about this topic as the numerical solution of DEs with Artificial
Neural Networks (ANNs). In this manner, some different approaches are studied for the
numerical solution of DEs.

Artificial Neural Networks (ANNs) are utilized for solving numerous mathematical prob-
lems in the literature. Lee and Kang (1990) get the solution of Ordinary Differential Equa-
tions (ODEs) by using ANNs [1]. In their work, the discretization of ODEs are obtained

1 Adnan Menderes University, Faculty of Arts and Sciences, Department of Mathematics, 09010, Aydın.
e-mail: kgunel@adu.edu.tr; ORCID: https://orcid.org/0000-0002-5260-1858.
e-mail: iclal@adu.edu.tr; ORCID: https://orcid.org/0000-0002-1999-8283.
§ Manuscript received: August 25, 2017; accepted: September 8, 2017.

TWMS Journal of Applied and Engineering Mathematics, Vol.9, No.4 c© Işık University, Department
of Mathematics, 2019; all rights reserved.

810

K. GÜNEL, İ. GÖR: A MODIFICATION OF ABC ALGORITHM FOR SOLVING INITIAL ... 811

with finite difference methods and Hopfield Neural Network is used to minimize cost func-
tion, which is constructed from differential equations. Malek and Beidokhti (2006) propose
an hybrid method with ANNs which is trained by optimization methods for solving first
and high order ODEs [2].

The studies are not limited to solve Ordinary Differential Equations (ODEs), in addition
some types of Partial Differential Equations (PDEs) are solved with ANNs including initial
and boundary value conditions. The studies including different approaches are outlined
in the following.

Lagaris et al. (1998) create a method for solving initial and boundary value problems
with ANNs including a trial function having two parts [3]. The first part is constructed
for satisfying initial and boundary conditions and the other part is for the parameters
which are adjusted in Feedforward Neural Network. The authors solve systems of ODEs
and PDE besides ODEs in their study. Aarts and Van Der Veer (2001) solve PDEs with
Feedforward Neural Network with a white box character [4]. The authors specifically
construct the network is trained by an evolutionary algorithm. McFall and Mahan (2009)
propose neural network model for the boundary conditions [5]. In the training stage, the
network produces error. Then, the weights of ANN are updated to decrease the error.
Beidokhti and Malek (2009) solve the initial and boundary value problems using ANNs of
which parameters are determined by hybrid method based on Kolmogorov and Cybenko
theorms [6]. Tsoulos et al. (2009) solve ODEs, Systems of ODES (SODEs) and PDEs via
Feedforward Neural Networks constructed with grammatical evolution and improve the
approach with local optimization [7]. In their study, trial solutions are created by hybrid
method in neural network with a scheme including grammatical evolution.

Some studies are about the numerical solution of some types of DEs. Anastassi (2014)
construct an ANNs method that can produce the best coefficients of two stage Runge-
Kutta methods [8]. Raja et al. (2015) create an approach based on neural networks
containing optimization with computational intelligence method sequential quadratic pro-
gramming for the solution of nonlinear Riccati differential equations [9]. Kumar and Yadav
(2015) reach approximated solution of one dimensional Bratu’s problem using Multi Layer
Perceptron (MLP) neural network algorithm [10].

In addition, global optimization techniques are used to get the numerical solution of
DEs. Raja et al. (2016) study about numerical solution of nonlinear singular Flierl-
Petviashivili equations utilizing ANNs and optimization algortihms as Genetic Algorithms
(GAs), Sequential Quadratic Programming (SQP) and their combinations [11].

In this work, we structure a Feedforward Neural Network (FNN)in order to get the
solution of Initial Value Problems (IVPs). The output of the network depends on the trial
function, which satisfies the initial conditions. Furthermore, to minimize the cost function
consisting with the derivative of the trial function, we modified the ABC algorithm as
a metaheuristic optimization algorithm, and use it to train the neural net. Our original
contribution is to made the improvements on ABC for solving IVPs. In experiments we
show that the modifications enhance the exploration and exploitation capability of the
ABC. The obtained results show the ability of ABC solution of IVPs.

In the sequel, first we briefly explain the ABC algorithm. Then, we propose some
improvements on classical ABC algorithm, and we describe that how the network is con-
structed and trained by the modified version of ABC for the numerical solution of IVPs. In
addition, we present experiments including the numerical solution of ODEs. In the fourth
section, the some experimental studies are given. Final section presents the limitations
and findings of the study.

812 TWMS J. APP. ENG. MATH. V.9, N.4, 2019

2. Artificial Bee Colony (ABC) Algorithm

Artificial Bee Colony (ABC) Algorithm is inspired by the behaviour of honey bees
[12]. The details of the behaviour of honey bees in nature are examined in the study of
Karaboga, D. [13]. In ABC, a food source means a solution of the problem and the amount
of the nectar means the qualify of the solution. The algorithm has three group of bees as
employed, onlooker, and scout bees. Employed bees find food sources and give information
to onlooker bees about the food. After this transformation of information, onlookers select
the best food source. When the qualify of the food source is not convenient, employed bee
abandon the source. Then the employed bee becomes a scout bee and search a new food
source.

Initially, the food positions are generated by randomly as given in Eq. 1

xi,j = xj + η(xj − xj) (1)

where i ∈ {1, 2, ..., Sn} and j ∈ {1, 2, ..., D}, η ∈ (0, 1) is a randomly generated real
number, xj is the lower bound and xj is the upper bound in the j-th dimension.

In this algorithm, onlooker bees select the convenient food source with estimating prob-
ability as calculated in Eq. 2

Pi =
fit(~xi)

Sn∑
i=1

fit(~xi)

(2)

where fit(~xi) is the amount of the i-th food source.
After determining the food source ~xi, the position of this source is changed with Eq. 3.

Then the nectar amount of the candidate source or solution can be detected.

xi,j(t+ 1) = xi,j(t) + ψ(xi,j(t)− xk,j(t)) (3)

where xi,j is determined neighboured to xk,j , ψ is random in [−1, 0] for i, k ∈ {1, 2, ..., Sn},
k 6= i. Also the indexes, k and j, are chosen randomly. As seen in Eq. 3, only one
component of the position vector of the bee ~xi is updated for obtaining the new position,
in ABC. According to this position update, the nectar amount of solution is calculated. If
the nectar amount of position better than the older one, the new position is selected and
the older position is ignored [14].

In the next section, we explain that how the feed forward neural network is constructed
for the solution of IVPs, and we clarify the modifications over ABC algorithm for training
of neural net.

3. Modification of ABC Algorithm for Solving IVPs

For the first order differential equation, the initial value problem is given in Eq. 4.{
y′(t) = f(t, y(t)),
y(t0) = y0

(4)

The solution of Eq. 4 occurred by creating trial function as yT (tj , ~p) = y0+(tj−t0)N(tj , ~p)

which is satisfied initial condition. In the trial function, N(tj , ~p) =

m∑
i=1

αiσ(zi) shows the

solution of feedforward neural network for the neuron zi = witj + βi where wi is the
weight and βi is the bias value for the input tj for 1 ≤ j ≤ n. N(tj , ~p) has the unknown

parameters vector as ~p = ~p(~α, ~β, ~w) which is determined by ABC algorithm. In the vector

~p, the unknown parameters defined as ~α, ~β, ~w ∈ Rm for m is the number of neurons

K. GÜNEL, İ. GÖR: A MODIFICATION OF ABC ALGORITHM FOR SOLVING INITIAL ... 813

in the hidden layer. In N(tj , ~p), the sigmoid function is selected as activation function,

σ(z) =
1

1 + exp(−z)
.

In feedforward neural network, the error appears after training of the network for each
input at any iteration. The minimization of the error occurs after updating the unknown
parameters. The aim of this process, the propagation of the error to whole network.

Generally, in the feedforward neural network E =
1

2

n∑
j=1

(dj − yj)2 is determined for the

error calculation called cost function. In this equation, dj is the desired output and yj is
the output of the network for the input tj . In this study, the cost function is calculated as

E =
1

n

n∑
j=1

(
∂yT
∂tj
− f(tj , yT (tj))

)2

so as to get the value of Mean Squared Error (MSE). In

this equation, the partial derivatives of y with respect to tj is
∂yT
∂tj

= N(tj , ~p) + tj
∂N(tj , ~p)

∂tj

where yT (tj , ~p) = y0 + (t− t0)N(tj , ~p) and
∂N(tj , ~p)

∂tj
=

m∑
i=1

αiwiσ(zi)(1− σ(zi)).

As for the second order differential equation as seen in Eq. 5, the calculations are fulfilled
the same way, except that the trial function is yT (tj , ~p) = A+B.(t− t0) + (t− t0)2N(tj , ~p)
. y′′(t) = f(t, y(t), y′(t)),

y(t0) = A
y′(t0) = B

(5)

In this type of DEs, E =
1

n

n∑
j=1

(
∂2yT
∂t2j

− f
(
tj , yT (tj),

∂yT
∂tj

))2

is the cost function for

the minimization of MSE. For calculation of MSE,

∂yT
∂tj

= B + 2(tj − t0)N(tj , ~p) + (tj − t0)2
∂N(tj , ~p)

∂tj

and
∂2yT
∂t2j

= 2N(tj , ~p) + 4(tj − t0)
∂N(tj , ~p)

∂tj
+ (tj − t0)2

∂2N(tj , ~p)

∂t2j

are estimated where
∂2N(tj , ~p)

∂t2j
=

m∑
i=1

αiwiσ(zi)(1− σ(zi))(1− 2σ(zi)).

Unlike the original ABC algorithm, we use adaptive swarm size in this study. Gener-
ally, the metaheuristics that use the adaptive swarm size paradigm generate a uniformly
distributed population over the whole search space. However, if a solution is abandoned
in ABC algorithm, then the generating a new bee population around the abandoned solu-
tion is an unnecessary process leading waste of time. To prevent the mentioned case, we
propose the generating a new population uniformly distributed on the interior or exterior
of a hypersphere as a subdomain of whole search space. The incomplete gamma function
allows us to perform the randomization process using Eq. 6.

~pi = ~C + r.~Ui

(
S2
i∫

0

t(
D
2
−1)e−tdt

) 1
D

Si.Γ
(
D
2

) 1
D

(6)

814 TWMS J. APP. ENG. MATH. V.9, N.4, 2019

where ~Ui is randomly generated vector by continuous uniform distribution over the search

space. ~C represents the position of best solution so far as the center of hypersphere, and

r is the radius of the hypersphere. In Eq. 6, Si =

√√√√ D∑
j=1

p2i,j for i = 1, 2, . . .M such that

M denotes the size of new population, and D specifies the dimension of search space.
Eventually, ~pi is the position of ith individual belonging the new generated population as
a neural network parameter. Figure 1 illustrates the randomization process on a hyper-
sphere. In Figure 1a, the generation of uniformly distributed points on the unit circle are
demonstrated. Figure 1b repeats the demonstration on a unit sphere.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-1.5

-1

-0.5

0

0.5

1

1.5

y

Uniformly distributed points over the interior and exterior of a circle

Sample points inside of circle
Sample points outside of circle

(a) 2-dimensional case on unit circle

-1.5

-1

-0.5

1

0
z

0.5

1

Uniformly distributed points over the interior and exterior of a sphere

y

0

1

x

1.5

0
-1

-1

Sample points inside of sphere
Sample points outside of sphere

(b) 3-dimensional case on unit sphere

Figure 1. Uniformly distributed points generated randomly on the inte-
rior or exterior of an hypersphere.

In our study, we generate a new bee population around the best solution ever found
using Eq. 6 in each iteration. It applies exploitation by making a pressure to obtain better
solution rather than the best found so far. Moreover, we generate a new candidate solution
on the exterior of the neighbourhood of any abandoned solution, in the scout bee phase.
After new population is generated the elitism stage is applied. In elitism, the fitness values
of newly generated population is calculated, and the weakest ones are eliminated. The
process maximises the probability of exploring the global optimum over the whole of search
space. In each iteration, we also reduce the radius of the hypersphere by a damping ratio
for making dynamization of exploration. The modified algorithm of ABC for obtaining the
solution of the first order differential equations with initial conditions is given following
in Algorithm 2 using the common functions given in Algorithm 1. One can easily update
the cost function and the other related functions in Algorithm 2 for second order ODEs.
In the next section, some different types of ODEs are solved numerically.

4. Numerical Experiments

In the numerical experiments, we solve some types of initial value problems with FNN
by training with both of classical and our proposed ABC algorithm. In all experiment, all
the parameters used in FNN trained by ABC algorithm are selected identical as seen in
Table 1 for making robust comparison.

The step size is chosen as h and a partition of domain interval [a, b] is created for
training set. In addition, the step size is halved h

2 for the test set except the nodes which

K. GÜNEL, İ. GÖR: A MODIFICATION OF ABC ALGORITHM FOR SOLVING INITIAL ... 815

Algorithm 1 Common functions used in ABC for IVPs

1: function Net(t,~α,~w,~β) . returns the neural net solution at t
2: m← the length of ~α . m indicates the number of neurons in the NN.
3: return

∑m
i=1 αiσ(wit+ βi)

4: end function

5: function dNet(t,~α,~w,~β) . returns the derivation of neural net solution at t
6: m← the length of ~α . m indicates the number of neurons in the NN.
7: return

∑m
i=1 αiwiσ(wit+ βi)(1− σ(wit+ βi))

8: end function

9: function Trialy(t,t0,y0,~p) . returns the trial solution at t according to the parameters of
neural network ~p

10: return y0 + (t− t0)Net(t,~p)
11: end function

12: function dTrialy(t,t0,y0,~p) . returns the value of ∂yT

∂t

13: return Net(t,~α,~w,~β) +(t− t0)dNet(t,~α,~w,~β)
14: end function

15: function Cost(~t,t0,y0,~p) . returns the fitness value depending on all inputs
16: n← the length of vector ~t specifies the number of inputs

17: E ← 1

n

n∑
j=1

{ dTrialy(tj ,t0,y0,~p) −f(tj ,Trialy(tj ,t0,y0,~p)) }2

18: return E
19: end function

Table 1. Free parameters used in this study.

The parameters The values of the parameters

Number of neurons in ANN, m 5
Number of population, N 100
Lower bound of search space -1
Upper bound of search space 1
Dimension of search space, D 3m
The step size for the training set, h 0.1
The step size for the test set, h

2 0.05
Number of iteration 300

are used for training set. However, only the node given by initial conditions is belonging
to the test set. After applying the training process to the network, it is able to give the
numerical solution of any points in the interval.

In Example 4.1, we solve classical first order linear differential equation. Example 4.2
demonstrates to ability of the proposed algorithm for solving nonlinear ODEs. Example
4.3 is a real world application introduced by Newton. The problem is a classical heat
transfer problem. Finally, an example of second order ODEs is solved in Example 4.4.
Obtained numerical solutions by traditional ABC algorithm are compared with proposed
approach regarding with absolute errors, and mean squared errors.

816 TWMS J. APP. ENG. MATH. V.9, N.4, 2019

Algorithm 2 Modified ABC Algorithm for IVP

1: procedure Modified ABC IVP . Main code blocks of modified ABC for solving IVP
2: Specify the interval [a, b] as a search space
3: h← the step size . h > 0
4: t0 ← a, y0 ← the initial condition for the problem
5: m← the number of neurons in Neural Net
6: Initialize the radius of hypersphere, r ← |b−a|

2
7: for j ← 0 to n do
8: tj ← a+ hj . Create a partition of search space
9: end for

10: for i← 1 to m do
11: Initialize artificial bee population as Neural Net parameters ~pi = (~αi, ~βi, ~wi) such that

~α, ~β, ~w ∈ Rm

12: Evaluate the fitness values for candidate solutions by calling Cost(~t,t0,y0,~pi) function
13: end for

14: iteration ← 1
15: repeat
16: for all employeed bee ~pi do . employeed bee phase

17: Generate a new solution as ~p′i in the neighbour of employeed bee ~pi using the Eq. 3
where k is randomly selected not equal to i

18: Evaluate the fitness values of new solutions by calling Cost(~t,x0,y0,~p′i) function

19: Apply the greedy selection by comparing the fitness values of new solutions ~p′i and
fitness values of employeed bees ~pi and determine the new population

20: end for
21: Check the probability values given Eq. 2 and normalize them to select onlooker bees

22: for all onlooker bee ~pi do . onlooker bee phase

23: Generate new solution as ~p′i in the neighbour of onlooker bee ~pi according to the
probability value Pi

24: Evaluate the fitness values of new solutions by calling Cost(~t,x0,y0,~p′i) function

25: Apply the greedy selection by comparing the fitness values of new solutions ~p′i and
fitness values of onlooker bees ~pi and determine the new population

26: end for

27: for all candidate solution ~pi do . Scout bee phase
28: if the candidate is an abandoned solution then
29: Replace it with a new randomly produced solution satisfying the condition∑D

i=1(pi − Ci)
2 > r2 for ensuring to stay the outside of the hypersphere as a neighboured

of the abandoned solution.
30: end if
31: end for

. Elitism phase
32: Using Eq. 6, generate a new bee population guaranteeing to stay inside of the hyper-

sphere as a neighboured of the best solution ever found.
33: Evaluate the fitness values of new solutions
34: Eliminate the weakest solutions according to the fitness values

35: Determine the best food source position and keep it into a memory.
36: Decrease the hypersphere radius by damping ratio
37: iteration ← iteration +1
38: until The maximum number of iteration is reached
39: end procedure

K. GÜNEL, İ. GÖR: A MODIFICATION OF ABC ALGORITHM FOR SOLVING INITIAL ... 817

Furthermore, the best cost values encountered in each iteration of neural network train-
ing stage are confronted. Figure 2 depicts the best cost values for each example. We also
compare the execution time required for getting ODE solution in test stage. Algorithms
are executed 10 times with randomly generated bee population, so the elapsed times are
calculated for each execution. As a result, the mean and the standard deviation of the
execution time is given in Table 7.

Example 4.1. y′(t) +
y(t)

t+ 1
= 0, t ∈ [2, 4],

y(2) = 3
(7)

The first example is first order homogenous linear differential equation as given in Eq. 7

having the exact solution as y(t) =
9

t+ 1
. After 10 trials, the best cost values are calculated

as 1.568× 10−5 and 4.240× 10−9 for ABC and the modified version, respectively. Table 2
summarizes the obtained absolute errors for the problem.

Table 2. The absolute errors obtained from feed forward neural network
outputs with test set using the step size h = 0.05 for Eq. 7 in Example 4.1.

k tk ABC Modified ABC

1 2.00 0.000 0.000
2 2.05 1.568×10−3 7.583×10−5

3 2.15 3.724×10−3 1.228×10−4

4 2.25 4.880×10−3 9.832×10−5

5 2.35 5.339×10−3 5.365×10−5

6 2.45 5.342×10−3 1.602×10−5

7 2.55 5.077×10−3 3.370×10−6

8 2.65 4.685×10−3 3.225×10−6

9 2.75 4.271×10−3 1.234×10−5

10 2.85 3.905×10−3 3.682×10−5

15 3.35 3.663×10−3 9.838×10−5

20 3.85 3.970×10−3 1.681×10−5

22 4.00 3.100×10−3 1.681×10−5

Example 4.2. y′(t)− t

y(t)
= 0, t ∈ [3, 4],

y(3) = 4
(8)

The First order homogenous linear differential equation as given in Eq. 8 has the exact
solution as y(x) =

√
25− t2. The experiments show that the best cost values are 2.957 ×

10−5 and 3.099×10−7 for ABC and modified ABC orderly. The absolute errors are reported
with Table 3, briefly.

Example 4.3. {
y′(t) = −0.5(y(t)− 25), x ∈ [0, 15],
y(0) = 32

(9)

Eq. 9 describes the Newton’s Laws of cooling problem. Newton’s Law of Cooling is utilized
to model the temperature change of an object to an environment of a different temperature.
Eq. 9 has the exact solution as y(t) = 7 exp(−0.5t) + 25. For ABC, best of MSEs is

818 TWMS J. APP. ENG. MATH. V.9, N.4, 2019

Table 3. The numerical solution of Feedforward Neural Network trained
by ABC for test set in Example 2.

k tk ABC Modified ABC

1 3.00 0.000 0.000
2 3.05 6.420×10−4 3.286×10−4

3 3.15 2.517×10−3 6.394×10−4

4 3.25 4.633×10−3 6.255×10−4

5 3.35 6.450×10−3 4.474×10−4

6 3.45 7.591×10−3 2.503×10−4

7 3.55 7.877×10−3 1.509×10−4

8 3.65 7.341×10−3 2.201×10−4

9 3.75 6.243×10−3 4.613×10−4

10 3.85 5.086×10−3 7.815×10−4

11 3.95 4.639×10−3 9.533×10−4

12 4.00 5.000×10−3 8.627×10−4

computed as 3.847 × 10−2. This value is 2.173 × 10−5 for the modified version. Table 4
exposes the numerical errors by the mentioned methods.

Table 4. The numerical solution of Feedforward Neural Network trained
by ABC for test set in Example 3.

k tk ABC Modified ABC

1 0.00 0.000 0.000
5 0.35 9.686×10−2 7.647×10−3

10 0.85 1.188×10−1 5.945×10−4

15 1.35 1.095×10−1 3.171×10−3

20 1.85 1.279×10−1 3.112×10−4

25 2.35 1.650×10−1 4.388×10−3

30 2.85 1.870×10−1 6.977×10−3

35 3.35 1.760×10−1 6.356×10−3

40 3.85 1.366×10−1 3.406×10−3

45 4.35 3.059×10−2 3.185×10−4

50 4.85 1.147×10−2 3.457×10−3

75 7.35 9.834×10−3 1.155×10−3

100 9.85 2.192×10−1 6.211×10−3

125 12.35 3.464×10−1 5.451×10−3

150 14.85 1.883×10−1 4.640×10−3

152 15.00 1.692×10−1 6.936×10−3

Example 4.4. y′′(t)− 5y′(t) + 4y(t) = 0, x ∈ [0, 1],
y(0) = 0
y′(0) = −1

(10)

In Eq. 10, second order homogenous linear differential equation with Cauchy condition

has the exact solution as y(t) =
(exp(t)− exp(−4t))

3
. The best of MSEs values are 53.530

and 52.330 for the mentioned methods, respectively. In Table 5, the absolute errors are
pointed out for both of the methods.

K. GÜNEL, İ. GÖR: A MODIFICATION OF ABC ALGORITHM FOR SOLVING INITIAL ... 819

Table 5. The numerical solution of Feedforward Neural Network trained
by ABC for test set in Example 4.

k tk ABC Modified ABC

1 0.00 0.000 0.000
2 0.05 2.951×10−2 2.965×10−2

3 0.15 1.893×10−1 1.908×10−1

4 0.25 4.348×10−1 4.443×10−1

5 0.35 8.301×10−1 8.397×10−1

6 0.45 1.445×100 1.448×100

7 0.55 2.383×100 2.376×100

8 0.65 3.805×100 3.783×100

9 0.75 5.956×100 5.907×100

10 0.85 9.198×100 9.104×100

11 0.95 1.407×10+1 1.390×10+1

12 1.00 1.735×10+1 1.714×10+1

0 10 20 30 40 50 60 70 80 90 100

Iteration

0.047

0.048

0.049

0.05

0.051

0.052

0.053

B
es

t
co

st
 s

o
 f

ar

Cost values obtained from neural net solution

Modified ABC
ABC

(a) Example 4.1

0 10 20 30 40 50 60 70 80 90 100

Iteration

0.051

0.052

0.053

0.054

0.055

0.056

0.057

B
es

t
co

st
 s

o
 f

ar

Cost values obtained from neural net solution

Modified ABC
ABC

(b) Example 4.2

0 10 20 30 40 50 60 70 80 90 100

Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

B
es

t
co

st
 s

o
 f

ar

Cost values obtained from neural net solution

Modified ABC
ABC

(c) Example 4.3

0 10 20 30 40 50 60 70 80 90 100

Iteration

2

3

4

5

6

7

8

B
es

t
co

st
 s

o
 f

ar

Cost values obtained from neural net solution

Modified ABC
ABC

(d) Example 4.4

Figure 2. Graphs of best cost values found so far.

5. Conclusion

In this work, we solve numerically some types of differential equations with initial con-
ditions with feed forward neural network trained by a modifed variant of ABC algorithm.
First of all, we construct a trial function depending on the solution of a neural network.
Trial function satisfies the initial conditions, and it used for unsupervised learning of neu-
ral network. The error appears after training of the network. We define a cost function
regarding with the trail function and the neural network outputs. To minimize the cost

820 TWMS J. APP. ENG. MATH. V.9, N.4, 2019

Table 6. Mean of cost values encountered in both training and testing stages.

Stage Example ABC Modified ABC

Training

Ex. 4.1 3.054× 10−5 ± 3.599× 10−5 1.541× 10−8 ± 1.054× 10−8

Ex. 4.2 2.170× 10−5 ± 2.738× 10−5 2.139× 10−7 ± 1.060× 10−7

Ex. 4.3 3.798× 10−2 ± 2.465× 10−2 2.975× 10−5 ± 1.509× 10−5

Ex. 4.4 4.743× 10+1 ± 3.635× 10−1 4.695× 10+1 ± 1.996× 10−1

Test

Ex. 4.1 3.072× 10−5 ± 3.072× 10−5 1.486× 10−8 ± 1.012× 10−8

Ex. 4.2 2.177× 10−5 ± 2.800× 10−5 2.240× 10−7 ± 1.101× 10−7

Ex. 4.3 3.805× 10−2 ± 2.447× 10−2 2.959× 10−5 ± 1.499× 10−5

Ex. 4.4 5.341× 10+1 ± 3.999× 10−1 5.286× 10+1 ± 2.248× 10−1

Table 7. Mean of elapsed time in seconds for test set.

Example ABC Modified ABC

Ex. 4.1 1.510× 10−4 ± 1.162× 10−4 1.516× 10−4 ± 1.344× 10−4

Ex. 4.2 2.134× 10−4 ± 2.883× 10−4 1.775× 10−4 ± 2.105× 10−4

Ex. 4.3 3.853× 10−4 ± 1.562× 10−4 4.681× 10−4 ± 2.267× 10−4

Ex. 4.4 1.745× 10−4 ± 2.120× 10−4 1.429× 10−4 ± 1.289× 10−4

function, we trained the network both traditional Artificial Bee Colony algorithm and a
variant of ABC proposed by us. Proposed algorithm uses dynamically constructed hy-
persphere to generate new bee population. The individuals in new population fall into
the hypersphere to increase the exploitation ability of traditional ABC. Similarly, the
individuals generated outside of the hypersphere supports the exploration quality of ABC.

In this work, we give some numerical examples some different types of differential equa-
tions such as first order and second order ODEs. The empirical studies precisely clarify
that the modified version of ABC outperforms the classical ABC by means of absolute and
mean squared errors. Table 6 exposes that cost values obtained in training and the testing
stages are quite similar. Only, the desired improvement has not been achieved for the
second order differential equation. Furthermore, it can be observed that the improvement
has been drastic at the initial steps of the algorithm with Figure 2. However, it has been
slight for following steps of the proposed algorithm.

According to the Table 7, the modification over classification does not affect the running
time of the algorithm. The solution at each node of the interval [a, b] are reached as short
as 10-thousandth of a second approximately. Consequently, the proposed metaheuristic
provides an advancement to ABC algorithm. In addition, the mentioned suggestions can
be applied to other population based global optimization algorithms as a future work.

Acknowledgement

We would like to acknowledge the support for this project from the Council of Higher
Education in Turkey (YÖK), Coordination of Academic Member Training Program (ÖYP)

in Adnan Menderes University, under Grant no. ADÜ-ÖYP-14011.

References

[1] Lee, H. and Kang, I. 1990. Neural algorithms for solving differential equations, Journal of Computa-
tional Physics, 91, 110.

[2] Malek, A. and Beidokhti, R.S. 2006. Numerical solution for high order differential equations using a
hybrid neural network-optimization method, Applied Mathematics and Computation, 183, 260-271.

K. GÜNEL, İ. GÖR: A MODIFICATION OF ABC ALGORITHM FOR SOLVING INITIAL ... 821

[3] Lagaris, I. E., Likas, A. and Fotiadis, D. I. 1998. Artificial neural networks for solving ordinary and
partial differential equations, IEEE Transactions on Neural Networks, 9(5), 987-1000.

[4] Aarts, L. P. and Van Der Veer, P. 2008. Neural Network Method for Solving Partial Differential
Equations, Neural Process. Lett., 14(3), 261-271.

[5] McFall, K. S. and Mahan, J. R. 2009. Artificial Neural Network Method for Solution of Boundary
Value Problems With Exact Satisfaction of Arbitrary Boundary Conditions, IEEE Transactions On
Neural Networks, 20(8).

[6] Beidokhti, R. S. and Malek A. 2009. Solving initial-boundary value problems for systems of PDE
using NN and optimization techniques, Journal of the Franklin Institute, 346, 898–913.

[7] Tsoulos, G. I., Gavrillis, D. and Glavas, E. 2009. Solving differential equations with constructed neural
networks, Neurocomputing, 72, 2385-2391.

[8] Anastassi, A. A. 2014. Constructing Runge–Kutta methods with the use of artificial neural networks,
Neural Computing and Applications, 25, 229-236.

[9] Raja, M. A. Z., Manzar, M. A. and Raza, S. 2015. An efficient computational intelligence approach
for solving fractional order Riccati equations using ANN and SQP, Applied Mathematical Modelling,
39, 3075-3093.

[10] Kumar, M. and Yadav, N. 2015. Numerical Solution of Bratu’s Problem Using Multilayer, Natl. Acad.
Sci. Letter, 38(5), 425–428.

[11] Raja, M. A. Z., Khan J. A. and Chaudhary, N. I. 2016. Reliable numerical treatment of nonlinear
singular Flierl–Petviashivili eq. for unbounded domain using ANN, GAs, and SQP, Applied Soft
Computing, 38, 617-636.

[12] Karaboga, D. 2005. An Idea Based On Honey Bee Swarm for Numerical Optimization, Technical
Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department.

[13] Karaboga, D. and Akay, B. 2009. A comparative study of Artificial Bee Colony algorithm, Applied
Mathematics and Computation, 214(1), 108-132.

[14] Chun-Feng, W., Kui, L. and Pei-Ping, S. 2014. Hybrid artificial bee colony algorithm and particle
swarm search for global optimization, Hindawi Publishing Corporation, Mathematical Problems in
Engineering, Article ID 832949, 8 pages.

Korhan Günel graduated from Ege University as a mathematician. He received his
one of the M.Sc. degrees in computer engineering from Dokuz Eylul University, and
received the other one in applied mathematics from Adnan Menderes University. He
completed his Ph.D. degree in computer science at the Department of Mathematics
in Ege University. His interests revolve around natural language processing, artificial
intelligence applied to education, global optimization and machine learning for solving
differential equations. Currently he works as Assistant Professor at the Department
of Mathematics in Adnan Menderes University.

İclal Gör graduated from Mimar Sinan Fine Arts University as a mathematician. She
received her M.Sc. degree in applied mathematics from Adnan Menderes University.
She is a Ph.D. candidate in the Department of Mathematics at Adnan Menderes
University. She currently works on numerical solutions of differential equations via
neural networks and metaheuristics.

