K-PRODUCT CORDIAL LABELING OF FAN GRAPHS
K-PRODUCT CORDIAL LABELING OF FAN GRAPHS
K. Jeya Daisy, R. Santrin Sabibha, P. Jeyanthi, M. Z. Youssef
[PDF]
Abstract
Let f be a map from V (G) to f0; 1; :::; k 1g where k is an integer, 1 k jV (G)j. For each edge uv assign the label f(u)f(v)(mod k). f is called a k-product cordial labeling if jvf (i) vf (j)j 1, and jef (i) ef (j)j 1, i; j 2 f0; 1; :::; k 1g, where vf (x) and ef (x) denote the number of vertices and edges respectively labeled with x (x = 0; 1; :::; k 1). In this paper we prove that fan Fn and double fan DFn when k=4 and 5 admit k-product cordial labeling.
Keywords
cordial labeling, product cordial labeling, k-product cordial labeling, 4-product cordial graph, 5-product cordial graph.