MODELING DISEASE TRANSMISSION DYNAMICS WITH RANDOM DATA AND HEAVY TAILED RANDOM EFFECTS: THE ZIKA CASE

MODELING DISEASE TRANSMISSION DYNAMICS WITH RANDOM DATA AND HEAVY TAILED RANDOM EFFECTS: THE ZIKA CASE

Z. Bekiryazici, T. Kesemen, M. Merdan, T. Khaniyev

[PDF]

Abstract

In this study, we investigate a compartmental model of Zika Virus transmission under random e ects. Random e ects enable the analysis of random numerical characteristics of transmission, which cannot be modeled through deterministic equations. Data obtained from Zika studies in the literature are used along with heavy tailed random e ects to obtain new random variables for the parameters of the deterministic model. Finally, simulations of the model are carried out to analyze the random dynamics of Zika Virus transmission. Deterministic results are compared with results from the simulations of the random system to underline the advantages of a random modeling approach. It is shown that the random model provides additional results for disease transmission dynamics such as results for standard deviation and coe cients of variation, making it a valuable alternative to deterministic modeling. Random results suggest around 90% - 120% coe cient of variation for the random model underlining the fact that the randomness should not be ignored for the transmission of this disease.

Keywords

Zika Virus, Pareto Distribution, Random Di erential Equation, Random Effect, Simulation.